

The best adhesive installs in the worst conditions.

SET-3G High-Strength Anchoring Adhesive

> (800) 999-5099 strongtie.com

© 2018 Simpson Strong-Tie Company Inc. F-A-SET3G18

SET-3G[™] High-Strength Epoxy Adhesive

SET-3G is the latest innovation in epoxy anchoring adhesives from Simpson Strong-Tie. Formulated to provide superior performance in cracked and uncracked concrete at elevated temperatures, SET-3G installs and performs in a variety of environmental conditions and temperature extremes. The exceptional bond strength of SET-3G results in high design strengths.

Features

- Exceptional performance superior bond-strength values at long-term elevated temperature of 110°F (43°C) using optimized drill bit diameters
- **Tested and assessed** in accordance with ICC-ES AC308 and ACI 355.4 for use in cracked and uncracked normal-weight and lightweight concrete
- Design flexibility can be specified for dry or water-saturated conditions when temperatures range from -40°F (-40°C) to 176°F (80°C)
- Jobsite versatility can be installed in dry, water-saturated or waterfilled holes in base materials with temperatures between 40°F (4°C) and 100°F (38°C)
- Maximized production and safety qualified for installation using the Speed Clean[™] DXS dust extraction drilling system as an alternative to the conventional blow-brush-blow hole-cleaning method
- Wire brush hole-cleaning system for conventional blow-brush-blow cleaning method
- Available in two cartridge configurations for maximum versatility 8.5 oz. coaxial or 22 oz. side-by-side cartridges dispensed using manual, battery or pneumatic dispensing tools

Product Descriptions

- 1:1 ratio, two-component, high-strength, epoxy-based anchoring adhesive formula
- Two-year shelf life for unopened cartridges stored between 45°F (7°C) and 90°F (32°C)
- Low-odor formulation
- When properly mixed, SET-3G will be a uniform gray color
- Volatile organic compound (VOC) 1.9 g/L
- Manufactured in the USA using global materials

Applications

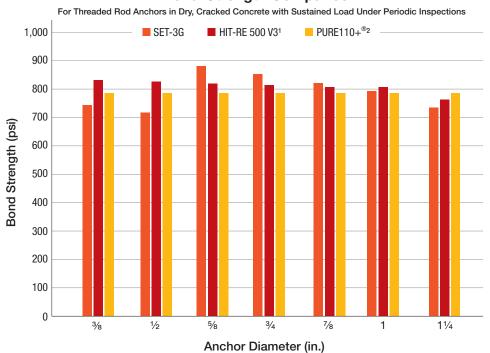
- Threaded rod anchor and rebar dowel installations in cracked and uncracked concrete under a wide variety of environmental installation and use conditions
- Installation in downward, horizontal and upwardly inclined (including overhead) orientations
- Qualified for use in structures assigned to Seismic Design Categories A through F

Codes

 ICC-ES ESR-4057 (concrete); City of Los Angeles (See ICC-ES ESR-4057); AASHTO M235 and ASTM C881, Types I and IV, Grade 3, Class C; NSF/ANSI Standard 61 (300 in.² / 1,000 gal.)

Chemical Resistance

• Contact Simpson Strong-Tie for information


Installation and Application Instructions

- Surfaces to receive epoxy must be clean.
- Base-material temperatures must be 40°F (4°C) or above at the time of installation. For best results, adhesive should be conditioned to a temperature between 70°F (21°C) and 80°F (37°C) at the time of installation.
- To warm cold adhesive, store cartridges in a warm, uniformly heated area or storage container.
- Mixed material can harden in the dispensing nozzle within 30 minutes at 70°F (21°C).

Note: For full installation instructions, see product packaging or visit strongtie.com/set3g.

SET-3G[™] High-Strength Epoxy Adhesive

Bond-Strength Comparison

HIT-RE 500 V3 is a product from Hilti Corp. Data from ICC-ES ESR-3814.
 Pure110+[®] is a trademark of DeWalt. Data from ICC-ES ESR-3298.

Installation in downward, horizontal and upwardly inclined (including overhead) orientations.

SIMPSON

Strong-Tie

SET-3G[™] High-Strength Epoxy Adhesive

SET-3G Adhesive Cartridge System

Model No.					Mixing Nozzle
SET3G10 ²	610 ² 8.5 Coaxial 12		CDT10S	EMN22i	
SET3G22-N1	T3G22-N ¹ 22 Side-by-side 10		EDT22S, EDTA22P, EDTA22CKT	EMN22i	

1. One EMN21i mixing nozzle and one extension are supplied with each cartridge.

2. Two EMN22i mixing nozzles and two nozzle extensions are supplied with each cartridge.

3. Cartridge estimation guidelines are available at **strongtie.com/apps**.

4. Use only Simpson Strong-Tie[®] mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair SET-3G adhesive performance.

SET-3G Cure Schedule^{1,2}

Concrete Temperature		Gel Time	Cure Time
(°F)	(°C)	(min.)	(hr.)
40	5	120	192
50	10	75	72
60	16	50	48
70	21	35	24
90	32	25	24
100	38	15	24

1. For water-saturated concrete and water-filled holes, the cure times should be doubled.

 For installation of anchors in concrete where the temperature is below 70°F (21°C), the adhesive must be conditioned to a minimum temperature of 70°F (21°C).

Test Criteria

Anchors installed with SET-3G adhesive have been tested in accordance with ICC-ES Acceptance Criteria for Adhesive Anchors in Concrete Elements (AC308).

Property	Test Method	Result*
Consistency	ASTM C881	Passed, non sag
Heat deflection	ASTM D648	147°F
Bond strength (moist cure)	ASTM C882	3,306 psi at 2 days
Water absorption	ASTM D570	0.13%
Compressive yield strength	ASTM D695	15,390 psi
Compressive modulus	ASTM D695	991,830 psi
Shore D durometer	ASTM D2240	84
Gel time	ASTM C881	52 minutes
Volatile organic compound (VOC)	_	1.9 g/L

*Material and curing conditions: 73 \pm 2°F, unless otherwise noted.

Hole Cleaning Accessories: Wire Brush Heads / T-Handle Extensions

Specifically designed for use with SET-3G to permit proper hole cleaning with fewer brush strokes at embedments up to 20 times the anchor diameter.

Note: When installing in holes drilled using the *Simpson Strong-Tie*[®] Speed Clean[™] system with the appropriate HEPA vacuum equipped with an automatic filter cleaning system, wire brushes are not used.

SET-3G Wire Brush Accessories

Model No.	Description	Hole Diameter	Anchor Diameter	Rebar Size	Package Qty.	Carton Qty.
ETB43S	7∕16" brush head	⁷ ⁄16"	3⁄8"		1	25
ETB50S	1⁄2" brush head	1⁄2"		#3	1	25
ETB56S	%16" brush head	9⁄16"	1⁄2"		1	25
ETB62S	5∕%" brush head	5⁄8"		#4	1	25
ETB68S	¹¹ /16" brush head	¹¹ ⁄16"	5⁄8"		1	25
ETB75S	3⁄4" brush head	3⁄4"		#5	1	25
ETB87S	%" brush head	7⁄8"	3⁄4"	#6	1	25
ETB100S	1" brush head	1"	7⁄8"	#7	1	25
ETB112S	1 1/8" brush head	11⁄8"	1"	#8	1	25
ETB137S	1 3/8" brush head	1%"	1 1⁄4"	#10	1	25

SET-3G T-Handle Accessories

Model No.	Description	Package Qty.	Carton Qty.
ETBS-TH	T-handle to clean holes up to 131/2" deep	1	25
ETBS-EXT	12" extension for ETBS-TH (T-handle)	1	25

0

SET-3G[™] High-Strength Epoxy Adhesive

OSHA Silica Dust Compliance Regulations

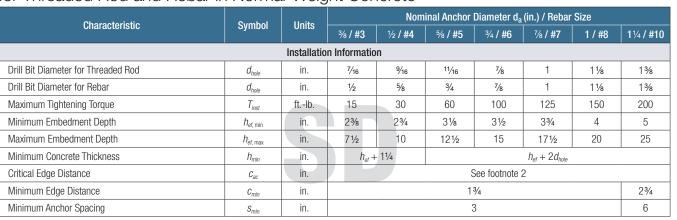
SET-3G is designed and tested to work with the Speed Clean[™] DXS dust extraction system. This cleaning system cuts out the dusty, time-consuming "blow-brush-blow" hole-cleaning process.

Automating dust removal also reduces the reliance on the installer to perform the cleaning process, thereby increasing the likelihood that anchors will be installed correctly.

- Faster: One worker can drill faster and "clean" holes at the same time rather than having two people on the task.
- Safer: No more airborne dust shooting out of holes from cleaning with compressed air.

For information on the OSHA Silica Dust Requirement, go to **strongtie.com/oshasilica**.

DXS Drill Bit


Adhesive Piston Plug Delivery System

Adhesive Piston Plug Family

For consistent dispensing of anchoring adhesives in any installation orientation, the Simpson Strong-Tie[®] Adhesive Piston Plug Delivery System offers you an easy-to-use, more reliable and less time-consuming means to dispense adhesive into drilled holes for threaded rod and rebar dowel installations at overhead, upwardly inclined and horizontal orientations.

The matched tolerance design between the piston plug and drilled hole virtually eliminates the formation of voids and air pockets during adhesive dispensing.

Piston Plug Delivery System


1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

2. $C_{ac} = h_{ef}(\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:


 $[h/h_{ef}] \le 2.4$

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr} ((h_{er} \times f_c)^{0.5} / (\pi \times d_a))$

- h = the member thickness (inches)
- h_{ef} = the embedment depth (inches)

SET-3G Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete^{1, 8}

Nominal Rod Diameter (in.) Characteristic Symbol Units 11/4 Steel Strength in Tension Minimum Tensile Stress Area A. in.2 0.078 0.142 0.226 0.334 0.462 0.606 0.969 26,795 Tension Resistance of Steel - ASTM F1554, Grade 36 4,525 8,235 13,110 19,370 35,150 56,200 Tension Resistance of Steel - ASTM F1554, Grade 55 5,850 10,650 16,950 25,050 34,650 45,450 72,675 Tension Resistance of Steel - ASTM A193, Grade B7 9,750 17,750 28,250 41,750 57,750 75,750 121,125 Tension Resistance of Steel --- Stainless Steel ASTM A193, Grade B8 and B8M Non lb 4,445 8,095 12,880 19,040 26,335 34,540 55,235 (Types 304 and 316) 39,270 82,365 Tension Resistance of Steel — Stainless Steel ASTM F593 CW (Types 304 and 316) 7,800 14,200 22,600 28,390 51,510 36,740 Tension Resistance of Steel — Stainless Steel ASTM A193, Grade B6 (Type 410) 8,580 15,620 24,860 50,820 66,660 106,590 Strength Reduction Factor for Tension — Steel Failure 0.755 φ Concrete Breakout Strength in Tension (2,500 psi \leq f'_c \leq 8,000 psi) Effectiveness Factor for Cracked Concrete k_{c,cr} 17 Effectiveness Factor for Uncracked Concrete 24 k_{c,uncr} Strength Reduction Factor — Concrete Breakout Failure in Tension 0.656 φ Bond Strength in Tension (2,500 psi \leq f'_c \leq 8,000 psi)⁷ Minimum Embedment h_{ef,min} 2% 2¾ 31/8 31⁄2 3¾ 4 5 in. Maximum Embedment h_{ef,max} in. 71⁄2 10 121/2 15 171/2 20 25 Characteristic Bond Strength psi 1,448 1,402 1,356 1,310 1,265 1,219 1,128 $\tau_{k,cr}$ in Cracked Concrete9 Temperature Range A^{2,4} Characteristic Bond Strength 1,672 psi 2,357 2,260 2,162 2,064 1,967 1,868 $au_{k,uncr}$ in Uncracked Concrete⁹ Continuous Inspection Characteristic Bond Strength psi 1,201 1,163 1,125 1.087 1,050 1,012 936 $\tau_{k,c}$ in Cracked Concrete9 Temperature Range B3,4 Characteristic Bond Strength 1,957 1,876 1,795 1,713 1,632 1,551 1,388 $au_{k,uncr}$ psi in Uncracked Concrete⁹ Anchor Category Dry Concrete 1 Dry Concrete 0.6510 Strength Reduction Factor $\phi_{dry,c}$ Water-Saturated Concrete, 3 2 Anchor Category or Water-Filled Hole Water-Saturated Concrete, 0.4510 0.5510 Strength Reduction Factor $\phi_{wet.ci}$ or Water-Filled Hole Characteristic Bond Strength psi 1,346 1,304 1,356 1,310 1,265 1,219 1,128 $\tau_{k,cr}$ in Cracked Concrete9 Temperature Range A2,4 Characteristic Bond Strength 2,192 2,102 2,162 2,064 1,967 1,868 1,672 psi $\tau_{k,uncr}$ in Uncracked Concrete Characteristic Bond Strength in Cracked Concrete⁹ Periodic Inspection psi 1,117 1,082 1,125 1087 1,050 1,012 936 $\tau_{k,cr}$ Temperature Range B3,4 Characteristic Bond Strength psi 1,820 1,744 1,795 1,713 1,632 1,551 1,388 $\tau_{k.uncr}$ in Uncracked Concrete Anchor Category Dry Concrete 1 2 Strength Reduction Factor Dry Concrete 0.5510 0.6510 $\phi_{dry,pi}$ Water-Saturated Concrete, Anchor Category 3 or Water-Filled Hole Water-Saturated Concrete, Strength Reduction Factor 0.4510 $\phi_{wet,pi}$ or Water-Filled Hole 1.0 Reduction Factor for Seismic Tension $\alpha_{\text{N,seis}}$ 1.0 0.9 1.0 1.0 1.0 1.0

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

- 2. Temperature Range A: Maximum short-term temperature = 160° F, maximum long-term temperature = 110° F.
- Temperature Range B: Maximum short-term temperature = 176°F, maximum long-term temperature = 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.
- 5. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 6. The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of ϕ .
- 7. Bond strength values shown are for normal-weight concrete having a compressive strength of $f'_c = 2,500$ psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.26}$ for uncracked concrete and a factor of $(f'_c/2,500)^{0.24}$ for cracked concrete.
- 8. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.
- 9. Characteristic bond strength values are for sustained loads, including dead and live loads.
- 10. The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of ϕ .
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N,\text{seis}}$.

SIMPSON

Strong-Tie

SET-3G Tension Strength Design Data for Rebar in Normal-Weight Concrete^{1,8}

					Rebar Size								
		Characteristic	Symbol	Units	#3	#4	#5	#6	#7	#8	#10		
		Si	teel Strength i	n Tension									
	Minim	num Tensile Stress Area	A _{se}	in. ²	0.11	0.20	0.31	0.44	0.60	0.79	1.27		
	Tension Resistance of Steel — Rebar (ASTM A615 Grade 60)		A/	lb.	9,900	18,000	27,900	39,600	54,000	71,100	114,300		
	Tension Resistance of	Steel — Rebar (ASTM A706 Grade 60)	N _{sa}	u.	8,800	16,000	24,800	35,200	48,000	63,200	101,600		
	Strength Reduction	n Factor for Tension — Steel Failure	φ					0.755					
		Concrete Breakout Str	ength in Tensi	on (2,500	$psi \le f'_c \le$	8,000 psi							
	Effectivenes	s Factor for Cracked Concrete	k _{c,cr}					17					
	Effectiveness	Factor for Uncracked Concrete	k _{c,uncr}					24					
	Strength Reduction Factor	or — Concrete Breakout Failure in Tension	φ					0.656					
		Bond Strength in			1								
		inimum Embedment	h _{ef,min}	in.	23⁄8	2¾	31/8	3½	3¾		-		
	Ma	aximum Embedment	h _{ef,max}	in.	7½	10	12½	15	17½	20	25		
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁹	$ au_{k,cr}$	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,128		
ction		Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,\mathit{uncr}}$	psi	2,269	2,145	2,022	1,898	1,774	1,651	1,403		
Inspe	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁹	$ au_{k,cr}$	psi	1,201	1,163	1,125	1,087	1,050	1,012	936		
Continuous Inspection	Temperature hange D	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	1,883	1,781	1,678	1,575	1,473	0.79 1.27 0 71,100 114,30 0 63,200 101,60 1 4 5 20 25 1,219 1,122 4 1,651 1,403 0 1,012 936 3 1,370 1,163 4 1,651 1,403 0 1,012 936 3 1,370 1,163 1 1,651 1,403 0 1,012 936 3 1,370 1,163 1 1,651 1,403 0 1,012 936 3 1,370 1,163	1,165		
Conti	Anchor Category	Dry Concrete						1					
Ŭ	Strength Reduction Factor	Dry Concrete	$\phi_{dry,ci}$					0.65 ¹⁰					
	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole				3			2				
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	$\phi_{\scriptscriptstyle wet,ci}$		0.4	15 ¹⁰			0.5510				
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁹	$ au_{k,cr}$	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,128		
_	Temperature nange A-	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,110	1,995	2,022	1,898	1,774	1,651	1,403		
ection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete9	$ au_{k,cr}$	psi	1,117	1,082	1,125	1,087	1,050	1,012	936		
Periodic Inspection	Temperature nange b	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	1,751	1,656	1,678	1,575	1,473	1,370	1,165		
eriod	Anchor Category	Dry Concrete				2		1					
ď	Strength Reduction Factor	Dry Concrete	$\phi_{\scriptscriptstyle dry,pi}$		0.55 ¹⁰ 0.65 ¹⁰								
	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole						3					
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	$\phi_{\scriptscriptstyle wet,pi}$					0.4510					
	Reduction	Factor for Seismic Tension	$lpha_{\it N,seis}$ ¹¹		1.0	1.0	1.0	1.0	1.0	1.0	1.0		

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

- 2. Temperature Range A: Maximum short-term temperature = 160°F, maximum long-term temperature = 110°F.
- 3. Temperature Range B: Maximum short-term temperature = 176°F, maximum long-term temperature = 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.
- 5. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 6. The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of ϕ .
- 7. Bond strength values shown are for normal-weight concrete having a compressive strength of $f'_c = 2,500$ psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of ($f'_c/2,500$)^{0.26} for uncracked concrete and a factor of ($f'_c/2,500$)^{0.25} for cracked concrete.
- 8. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.
- 9. Characteristic bond strength values are for sustained loads, including dead and live loads.
- 10. The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of ϕ .
- For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by a_{N seis}.

IBC 1

SIMPSON

© 2018 Simpson Strong-Tie Company Inc. • P.O. Box 10789, Pleasanton, CA 94588

SET-3G Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete¹

	Units	Nominal Rod Diameter (in.)							
Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1 1⁄4	
Steel Str	ength in She	ar			1	1			
Ase	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
		2,715	4,940	7,865	11,625	16,080	21,090	33,720	
V _{sa}	lb.	3,510	6,390	10,170	15,030	20,790	27,270	43,605	
		5,850	10,650	16,950	25,050	34,650	45,450	72,675	
$\alpha_{V,seis}^4$				0.75			1	.0	
		2,665	4,855	7,730	11,425	15,800	20,725	33,140	
V _{sa}	lb.	4,680	8,520	13,560	17,035	23,560	30,905	49,420	
		5,150	9,370	14,915	22,040	30,490	40,000	63,955	
$\alpha_{V,seis}^4$		0.	80		0.75		1	.0	
φ					0.65 ²				
crete Break	out Strength	in Shear							
d _a	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
I _e	in.				h _{ef}				
φ		0.703							
oncrete Pryo	ut Strength i	n Shear			-	-			
K _{cp}	in.	1.0 for $h_{ef} < 2.50^{\circ}$; 2.0 for $h_{ef} \ge 2.50^{\circ}$							
φ		0.703							
	$\begin{array}{c c} A_{se} \\ \hline \\ V_{sa} \\ \hline \\ \hline \\ v_{sa} \\ \hline \\ v_{sa} \\ \hline \\ \hline \\ \phi \\ \hline \\ \hline \\ crete Breake \\ \hline \\ d_a \\ \hline \\ l_e \\ \phi \\ \hline \\ \hline \\ crete Pryot \\ k_{cp} \\ \phi \\ \hline \end{array}$	A_{se} in. ² V_{sa} lb. v_{sa} lb. $\alpha_{V,sels}^4$ lb. v_{sa} lb. $\alpha_{V,sels}^4$ lb. $\alpha_{V,sels}^4$ lb. α_{l_e} in. d_a in. ϕ in. ϕ in. ϕ in. ϕ in. ϕ in. ϕ in.	Steel Strength in Shear A_{se} in. ² 0.078 2,715 2,715 3,510 5,850 3,510 5,850 α_{Wsels}^{4}	Steel Strength in Shear A_{se} in. ² 0.078 0.142 $2,715$ 4,940 3,510 6,390 V_{sa} lb. 3,510 6,390 V_{sa} lb. 2,665 4,855 V_{sa} lb. 4,680 8,520 σ oncrete Breakout Strength in Shear oncrete Breakout Strength in Shear d_a in. 0.375 0.5 l_e in. σ oncrete Pryout Strength in Shear ϕ in. 1. ϕ in. 1.	Steel Strength in Shear A_{se} in. ² 0.078 0.142 0.226 Q_{se} 2,715 4,940 7,865 V_{sa} lb. 3,510 6,390 10,170 S_{s850} 10,650 16,950 16,950 $\alpha_{V_{sess}}$ $2,665$ 4,855 7,730 V_{sa} lb. 2,665 4,855 7,730 V_{sa} lb. 2,665 4,855 7,730 V_{sa} lb. 4,680 8,520 13,560 $\sigma_{V_{sess}}$ $\sigma_{0.80}$ $\sigma_{0.80}$ $\sigma_{0.80}$ ϕ $\sigma_{0.80}$ $\sigma_{0.625}$ $\sigma_{0.625}$ l_e in. 0.375 0.5 0.625 l_e in. 0.375 0.5 0.625 l_e in. 1.0 for $h_{el} < 100$ $\sigma_{el} < 100$	Steel Strength in Shear A_{se} in. ² 0.078 0.142 0.226 0.334 V_{sa} lb. 2,715 4,940 7,865 11,625 V_{sa} lb. 3,510 6,390 10,170 15,030 $\sigma_{V_{sas}}^{d}$ 0.226 0.334 2,715 4,940 7,865 11,625 V_{sa} lb. 3,510 6,390 10,170 15,030 25,050 $\sigma_{V_{sas}}^{d}$ 0.650 16,950 25,050 25,050 11,425 V_{sas}^{d} 0.665 4,855 7,730 11,425 V_{sas}^{d} 0.80 0.75 0.65 ² $\sigma_{V_{sass}^{d}}^{d}$ 0.80 0.75 0.65 ² http://datalow/datering/datalow/da	Steel Strength in Shear A_{se} in. ² 0.078 0.142 0.226 0.334 0.462 V_{sa} in. ² 2,715 4,940 7,865 11,625 16,080 V_{sa} ib. 3,510 6,390 10,170 15,030 20,790 $\sigma_{V_{sab}}^{4}$ 0.650 16,950 25,050 34,650 $\alpha_{V_{sabs}}^{4}$ 0.655 13,560 17,035 23,560 v_{sa} ib. 4,680 8,520 13,560 17,035 23,560 v_{sas}^{4} 0.80 0.75 0.65 ² 0.75 0.65 ² https://datalogical.et/aligned/line 0.375 0.5 0.625 0.75 0.875 ϕ in. 0.375 0.5 0.625 0.75 0.875 l_e in. 0.375 0.5 0.625 0.75 0.875 l_e in. 0.10 for $h_{ef} < 2.50^{"}$; 2.0 for $h_{ef} \ge 2.5$ ϕ 0.70 ³	Steel Strength in Shear A_{se} in. ² 0.078 0.142 0.226 0.334 0.462 0.606 V_{se} $2,715$ $4,940$ $7,865$ $11,625$ $16,080$ $21,090$ V_{se} $b.$ $3,510$ $6,390$ $10,170$ $15,030$ $20,790$ $27,270$ $\delta,850$ $10,650$ $16,950$ $25,050$ $34,650$ $45,450$ α_{Vsebs}^{d} $2,665$ $4,855$ $7,730$ $11,425$ $15,800$ $20,725$ V_{sa} $lb.$ $4,680$ $8,520$ $13,560$ $17,035$ $23,560$ $30,905$ V_{sas}^{sd} 0.80 0.75 1 0.65^2 ho 0.80 0.75 1 0.65^2 ho 0.375 0.5 0.625 0.75 0.875 1 ϕ 0.375 0.5 0.625 0.75 0.875 1 d_a in. 0.375 0.5	

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14

17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of ϕ .

4. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by α_{vseis} for the corresponding anchor steel type.

SET-3G Shear Strength Design Data for Rebar in Normal-Weight Concrete¹

Characteristic		Units	Nominal Rod Diameter (in.)						
Gindracteristic	Symbol	Units	#3	#4	#5	#6	#7	#8	#10
Steel Strength in Shear									
Minimum Shear Stress Area	A _{se}	in. ²	0.110	0.200	0.310	0.440	0.600	0.790	1.270
Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	V	lh	5,940	10,800	16,740	23,760	32,400	42,660	68,580
Shear Resistance of Steel — Rebar (ASTM A706 Grade 60)	– V _{sa}	lb.	5,280	9,600	14,880	21,120	28,800	37,920	60,960
Reduction Factor for Seismic Shear — Rebar (ASTM A615 Grade 60)	4		0.60 0					0).8
Reduction Factor for Seismic Shear — Rebar (ASTM A706 Grade 60)	$\alpha_{V,seis}$				0.60		0.8		
Strength Reduction Factor for Shear — Steel Failure	φ					0.65 ²			
Concrete Bre	akout Stre	ngth in S	Shear						
Outside Diameter of Anchor	d _a	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load-Bearing Length of Anchor in Shear	l _e	in.				h _{ef}			
Strength Reduction Factor for Shear — Breakout Failure	φ					0.70 ³			
Concrete P	ryout Stren	igth in Sh	near						
Load-Bearing Length of Anchor in Shear	k _{cp}	in.	. 1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ "						
Strength Reduction Factor for Shear — Breakout Failure	ϕ		0.703						
1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11. 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c)									

2. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The tabulated value of *∮* applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used and the requirements of ACI 318-14

for Condition B to determine the appropriate value of *\u00f8*.
4. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design

concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by α_{Vseis} for the corresponding anchor steel type.

F-A-SET3G18 4/18 exp. 6/20

This flier is effective until June 30, 2020, and reflects information available as of April 1, 2018. This information is updated periodically and should not be relied upon after June 30, 2020. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

→

IBC

