Technical EPS insulation as manufactured is a modified expanded polytyrene. EPS is produced from state of the art equipment from the industry's innovator in technology. EPS is a rigid foamed plastic with resilient closed cells moided in a range of densities, sizes and profiles to meet your application/specification requirements. Insulating products provide all of the characteristics required to long-term performance: permanent R value, inherent water resistance and excellent physical strenght and dimensional stability. The need for greater energy-efficiency in buildings today and the need for lower cost construction has made EPS the logical insulation for building. EPS provides a high R value at a comparatively low cost, and, therefore, is the insulation of choice for: o Panel Core o Cavity Wall Insulation o Roof Insulation o Non-Structural Sheathing o Perimeter Insulation o T & G Sheathing o Wall Systems o Plaster/Drywall Base o Exterior Insulation o Masonry Fill Insulation o Cold Storage Insulation o Styrofoil® Sheathing. Typical Physical Properties of EPS Insulation: | Property Density (Nominal) | | Units | ASTM Test | | | | | |--|--|--|--------------------------------|---|--|--|--| | | | | | 1.0 | 1.25 | 1.5 | 2.0 | | Thermal Conductivity
K Factor | at 40F
at 75F | BTU/(hr.)
(sq. ft.) (F/in.) | C177 or
C518 | 0.24
0.26 | 0.235
0.255 | 0.22
0.24 | 0.21
0.23 | | Thermal Resistance
Values (R)* | at 40F
at 75F | per inch
thickness | andonder | 4.17
3.85 | 4.25
3.92 | 4.55
4.17 | 4.76
4.35 >> | | Strength Properties Compressive 10% Deformation Flexural Tensile Shear Shear Modulus Modulus of Elasticity | | psi
psi
psi
psi
psi
psi | D1621
C203
D1623
D732 | 10-14
25-30
16-20
18-22
280-320
180-220 | | 15-21
40-50
18-22
26-32
460-500
320-360 | 25-33
55-75
23-27
33-37
600-640
460-500 | | Moisture Resistance
WVT
Absorption (vol.) | | perm. in.
% | C355
C272 | 1.2-3.0
less tha
2.5
none | 1.1-2.8
In less than
2.5
none | 0.9-2.5
less than
2.0
none | 0.6-1.5
less than
1.0
none | | Coefficient of
Thermal Expansion | | in./(in.) (F) | D696 | 0.00003 | 5 0.000035 | 0.000035 | 0.000035 | | Maximum Service Temperature
Long-term
Intermittent | | E pr | | 167
180 | 167
180 | 167
180 | 167
180 | | Oxygen Index | | 9/6 | D2863 | 30.4 | 30.4 | 30.4 | 30.4 | | Dimensional
Stability | Survey of the second se | %
Change | D2126 | max.
2.0 | max.
2.0 | max.
2.0 | max 2.0 | | Toxicity | | Laboratory
Reports | | Approximately the same as burning wood, paper or cardboard. | | | | | Fungus & Bacterial
Resistance | | F.H.A. Test
Procedures | | Will not support bacterial or fungus growth; no food value. | | | | ## Advantages · Low material and installation costs · Available in a wide range of sizes . Can be obtained in various densities . Easy to handle and apply . Simple to cut and shape with common tools . Provides an excellent surface for laminate base . Excellent bond with drywall and non-solvent type adhesives . Clean, odorless, nonirritating to skin . Restricts moisture penetration ## Characteristics - Low thermal conductivity Reflective white color · Effective over wide temperature range · High strength - to weight ratio . Will not twist or warp . Unaffected by vibration . Non-dusting . Resistant to most acids and alkalis . Does not support bacterial growth