INFORMATIONAL & TECHNICAL GUIDE # ABS Pipe: For Drain, Waste and Vent Applications #### WHAT IS ABS PIPE? ABS pipe and fittings are made from a thermoplastic resin called Acrylonitrile-Butadiene-Styrene (or ABS for short). Strict quality control procedures for the manufacturing of ABS resins are practiced throughout the industry. In addition, third party certifiers periodically audit resin manufacturers for compliance with applicable standards and quality control requirements. #### THE ORIGIN OF ABS PIPE ABS pipe and fittings were originally developed in the early 1950s for use in oil fields and the chemical industry. In 1959, John F. Long, a prominent Arizona builder, used ABS pipe in an experimental residence, which he built to test the latest ideas in effective, cost-cutting building supplies. Twenty-five years later, an independent research firm dug up and analyzed a section of the drain pipe. The result: no evidence of rot, rust or corrosion. In 1960, the FHA approved the use of ABS pipe for DWV applications. Since that time, it has become the leading material for DWV applications because it offers an outstanding combination of properties. Contractors have installed more than 10 billion feet of ABS pipe in residential and commercial construction. ### ABS PIPE OFFERS MANY ADVANTAGES FOR DWV APPLICATIONS Today, ABS plastic pipe is the standard material for many types of DWV systems. Its properties make it ideal for residential homes, manufactured housing, commercial and industrial buildings, and recreational vehicles. - **Ready availability.** Schedule 40 ABS pipe (ABS pipe with the same wall thickness as standard steel pipe) and fittings are readily available through plumbing supply distributors and other sources. ABS pipe is available in 1-1/2" diameter, 2", 3", 4" and 6" with solid wall or cellular core wall constructions, both of which can be used interchangeably. A full range of fittings (elbows, tees, wyes, couplings and traps) are available. - **Lightweight.** A 3" diameter, 10-foot long section of ABS pipe weighs under 10 pounds making it easy to handle. Installers find that less physical effort is required in handling ABS pipe, making it easy and quick to assemble. - Easy installation. Assembly involves a one-step solvent cementing process. No threading, no primer, no lead pot and torch required! (See pages 10 to 13 for complete installation guidelines.) - Lower cost than cast iron or steel pipe. ABS pipe is less expensive, foot-for-foot, than metal pipe. In addition, easier installation means faster installation time which results in lower labor costs. A DWV installation in a typical two-bath home (with about 100 joints) can be completed two to six hours faster with ABS pipe than with other materials. - Toughness. ABS pipe exhibits outstanding impact resistance which enables it to resist mechanical damage even at -40°F temperatures. ABS pipe has the strength to withstand the crushing loads of soil, slab foundations and high surface loads without collapse. It is also resistant to the impact of accidental abuse common to construction and plumbing operations. - High performance at extreme temperatures. The slow rate with which heat or cold is absorbed enables ABS pipe to retain its toughness during temperature changes an important quality in a system that handles both hot and cold wastes. ABS pipe remains rigid during prolonged exposure to high heat such as that associated with a dishwasher discharging water at 180°F, yet retains its high impact characteristics at sub-freezing temperatures. - Resistance to chemicals and corrosion. ABS pipe offers outstanding resistance to most household chemicals and many corrosive industrial liquids. (See pages 6 and 7 for details on specific chemicals.) - **High self-ignition point.** With a self-ignition temperature of 871°F, ABS pipe is not a fire hazard in a building. If installed properly, it can be used in high-rise fire-resistive construction. (See pages 8 and 9 for details on ABS pipe and fire issues.) ### ABS Pipe: The Standard for DWV Applications ABS pipe and fittings are recognized by every major standards organization and regional code authority in the United States and Canada. In making the ABS resin itself, manufacturers must meet the ASTM requirements of Cell Classification 4-2-2-2 for pipe and 3-2-2-2 for fittings; a series of physical property testing on the resin. ASTM Standards set strict specifications for the quality of ABS pipe and fittings. Schedule 40 ASTM F 628 and ASTM D 2661 Standards define the requirements which must be met to be eligible for certification by listing agencies. With its light weight and unique properties, ABS piping is easy to install above or below ground. Even so, it's important that you follow some basic guidelines to ensure a successful installation. Always consult and adhere to local codes that regulate ABS pipe for DWV applications, and secure the necessary plumbing permits. the two when connecting building drains to building sewers by using transition cement. Consult local codes and pipe manufacturers for specific instructions. #### **SPECIFICATION** Specifying ABS pipe is a relatively easy task as the pipe wall of Schedule 40 ABS DWV pipe is the same thickness as Schedule 40 (IPS) steel pipe. When preparing specifications, it is important to note the type of materials to be used in DWV applications. Architects, mechanical engineers and builders should incorporate ABS pipe and fittings into their specifications by a reference similar to the following: "All soil lines, waste lines, vents, and building drains shall be installed with ABS pipe and fittings conforming to Schedule 40 ASTM F 628 or ASTM D 2661. All products shall bear the seal of a nationally-recognized listing or certifying agency." #### **SELECTION** Selecting the proper ABS pipe and fittings is the first step to a successful installation. ABS pipe and fittings for DWV applications carry a variety of markings for easy identification: ASTM and/or CSA standards, manufacturer's name and trademark, nominal pipe size, the DWV symbol, production code, third-party certification, listing agency logo and any other markings required or permitted by local codes. Pipe is marked on both sides at two-foot intervals; fitting markings vary slightly because of space limitations. When selecting ABS pipe, be sure to choose "Schedule 40 ABS DWV." Only Schedule 40 pipe and fittings that conform to nationally recognized standards may be marked "ABS DWV." Mixing of ABS and PVC pipe and fittings within the same system is not recommended. However, you can join Schedule 40 ABS pipe carries a variety of informational markings. Cellular-core pipe is marked as shown here; solid pipe has the marking "ASTM D 2661 Schedule 40 ABS DWV." Both types also feature the manufacturer's code for resin manufacturer, lot number, and date of manufacture, as well as nominal pipe size and other markings required or permitted by local codes. Fitting markings vary slightly because of space limitations. ## ABS Pipe and Fittings in Standards and Codes for DWV Applications #### PRODUCT STANDARDS: - American National Standards Institute (ANSI) - American Society for Testing and Materials (ASTM) - ASTM D 2661 (Schedule 40 solid pipe) - ASTM F 628 (Schedule 40 cellular core) - ASTM D 3311 (Specifies drainage pattern for fittings) - Canadian Standards Association (CSA) - CSA CAN/CSA B181.1 Schedule 40 - National Sanitation Foundation International (NSF) - Standard NSF 14 ABS pipe and fittings are also listed by third party certifiers including CSA, NSF International and IAPMO. #### **MODEL PLUMBING CODES:** - Building Officials and Code Administrators (BOCAI) - National Plumbing Code - International Association of Plumbing & Mechanical Officials (IAPMO) - Uniform Plumbing Code - International Code Council (ICC) BOCAI - SBCCI - ICBO - International Plumbing Code (IPC) - Council of America Building Officials (CABO) - One and Two Family Dwelling Code - National Association of Plumbing, Heating and Cooling Contractors (NAPHCC) - National Standard Plumbing Code - Southern Building Code Congress International (SBCCI) - Standard Plumbing Code ### ABS Pipe Offers Outstanding Chemical Resistance ABS pipe offers excellent chemical resistance in many applications. It stands up to any solution of ammonium chloride, calcium chloride or sodium hydroxide, all of which are corrosive to many metals. ABS pipe is also unaffected by aqueous salt solutions, mineral acids and alkalis. #### RESISTANCE TO HOUSEHOLD CHEMICALS ABS pipe is preferred for residential DWV applications because of its resistance to the chemicals commonly used in bathrooms and kitchens. According to studies performed by the ABS Institute, ABS pipe was shown to be unaffected by commonly used household chemicals – including drain and bowl cleaners. Similarly, water has almost no effect. In a 24-hour immersion test, ABS pipe absorbed only 0.005% water by weight. | Product | Comments | Effect | | | | | |---|---|--------|--|--|--|--| | Tide detergent | 10% concentration used was far greater than recommended. Solution was very viscous. | None | | | | | | Soilax cleanser | Mostly trisodium phosphate with sodium carbon | | | | | | | None | | | | | | | | sodium tripolyphosphate and ammonium chlo
At 20% the solution was saturated and was fal
concentrated than would be recommended for
actual service. | | | | | | | | Borax cleanser | Mixture of hydrated sodium borates. Saturated solution is about 2% concentration. | None | | | | | | Calgon water soften | er | | | | | | | Sodium hexametaphosphate. | | | | | | | | Clorox bleach | Sodium hypochlorite. It is never used at full stre | ength | | | | | | None | | | | | | | | // No | as it was here. | | | | | | | Ammonia 5% solution | | | | | | | | Product | Active Major Ingredients | "Normal" "Excess" | |---------------------|---------------------------------------|-------------------| | Drano | Sodium hydroxide. | No effect No | | effect | | | | Liquid Sani-flush | Hydrogen chloride, oxalic acid, alkyl | No effect No | | effect | trimethyammonium chloride. | | | Sani-flush | Sodium bisulphate, monopotassium | No effect No | | effect | | | | | peroysulphate. | | | Liquid Plumber | Sodium hydroxide. | No effect No | | effect | | | | Lysol bowl cleaner | Hydrogen chloride, N-alkyl dimethyl | No effect No | | effect | | | | // W | benzyl ammonium chloride. | | | Vanish bowl cleaner | Sodium acid sulphate. | No effect No | Source: ABS Institute ### CHEMICAL RESISTANCE FOR INDUSTRIAL APPLICATIONS The chemical resistance of ABS pipe also makes it suitable for many industrial applications. Sewage treatment plants use ABS pipe because it stands up to the highly corrosive and abrasive liquids commonly found in such systems. The accompanying chart provides a general guide to chemical resistance for specific chemicals. In any given application, however, resistance is a function of many factors (like temperature, stress and pressure), not just the chemical involved. For particular application specifications or to find out about any chemical not listed, contact an ABS pipe/fittings manufacturer. # Chemical Resistance of ABS Plastic Pipe | <u>160°F (7</u>
CHEMICAL 120°F (48.9° | | |] | | 160°F (
F (48.9 | _ | C) | | 160°F (
°F (48.9° | | ֖֖֖֖֖֝֓֞֝֟֝֟֝ <u>֚</u> | |---|--------|----------|----------|---|--------------------|--------|--------|--|----------------------|--------|------------------------| | (Concentration) 73°F (| |] | | (Concentration) 73°F (| | | | | (23°C) | | | | , | | _ | | | | R | | , <u>, , , , , , , , , , , , , , , , , , </u> | ÌN | N. | ١. | | Acetamide (5%)
Acetic acid (glacial) (100%) | R
N | R
N | -
 N | Copper sulphate aqueous all
Cottonseed oil | R
R | R | _ | Nitric acid (>70%)
Nitrobenzene | N N | N
N | | | Acetic acid (50%) | N | N | N | Cresol (100%) | N | _ | N | | | 14 | | | Acetic acid (5%) | R | R | - | Cyclohexane | R | С | _ | Oils and Fats | R | - | | | Acetic anhydride (100%) | N | N | _ | Cyclohexanol | C | Č | N | Oleic acid | R
N | C | | | Acetone (100%) | N | N | N | Cyclohexanone | N | N | N | Oleum
Olive Oil | R | _ | T | | Acetophenone | N | N | - | Cyclohexylamine | N | - | - | Oxalic acid, aq. | R | _ | | | Acetyl chloride | N | - | - | Dibutyl phthalate pure | _ | N | _ | • • | | _ | | | Alcohol, allyl | N | N | - | Dichlorobenzene | N | N | _ | Palmitic acid (10%) | R | - | | | Alcohol, amyl Tech. pure | N | N | - | Dichloroethane | N | N | _ | Paraffin | R | - | | | Alcohol, benzyl | N | N | - | Diethanolamine | R | R | - | Pentane | N
R | N
- | | | Alcohol butyl | N | N | - | Diethyl amine | N | - | - | Perchloric acid, aq. (10%-70%
Perchloroethylene | N | _ | | | Alcohol, butyric
Alcohol, cetyl | R
R | R
- | _ | Diethylene glycol | R | R | - | Petroleum (super) | N | N | | | | R to N | l | N | Diethyl ether | N | N | - | Petroleum (sour, refined) | R | - | | | Alcohol, furfuryl | N | N | _ | Dimethyl formamide pure | N | N | - | Phenol (5%) | C | _ | | | Alcohol, isopropyl (2-propand | | - | _ | Dioctyl phthalate | N | - | N | Phenol | l Ñ l | _ | | | | R to N | | N | Diphenylamine | R | R | - | Phosphoric acid (50%) | R | _ | | | Alcohol, propyl (1-propanol) | R | - | N | Esters | N | - | N | Phthalic acid, aq. | R | R | | | Aluminum salts (chloride, | R | R | R | Ethers | N | - | N | Picric acid, aq. | N | _ | 1 | | fluoride, hydroxide | | | | Ethylacetate pure | N | N | - | Potassium salts | R | - | | | metaphosphate sulphate) | | | | 2-ethyoxyethanol | - | N | - | Propyl alcohol | R | - | | | Ammonia, gas, dry | Ν | - | N | Fatty acids | R | - | R | Sewage, residential | R | _ | | | Ammonia, aqueous | R | - | R | Ferric chloride, aq. all | R | R | - | Silver salts | R | _ | | | Ammonium salts (acetate, | R | R | - | Ferric & ferrous salts, aq. | R | - | R | Soap solutions | R | _ | | | carbonate chloride, fluoride | ! | | | Fluorine, wet gas | N | - | N | Sodium bromide | R | R | | | (10%-25%), hydrosulphide, | | | | Formaldehyde (to 40%) | R | R | R | Sodium carbonate (25%) | R | R | | | hydroxide metaphosphate | | | | Formic acid aq. (10%-50%) | R to N | | N | Sodium chloride aq. salt | R | R | | | nitrate, phosphate sulphate
sulphide, thiocyanate) | , | | | Fruit juices & pulp all & fructo | | - | N | Sodium chromate | R | R | | | Amyl acetate Tech. pure | N | N | _ | Furtural | N
N | –
N | N
- | Sodium fluoride | R | R | | | Amyl chloride (100%) | N | - | N | Furturyl alcohol | | IV | _ | Sodium hydrogen carbonate | R | R | | | Aniline all | N | N | N | Gas, natural, methane | R | - | - | Sodium hydrogen sulfite | R | R | | | Aqua Regia | N | - | N | Gasoline | N | - | N | Sodium hydroxide
Sodium hypochlorite | R
R to N | R
R | | | | R | | С | Glucose | - | R | - 6 | Sodium nitrate | R | R | | | Barium salts all
Barium bromide | R | -
 R | - | Glycerine (glycerol) aq. (to 10 | 0%) | R | R | Sodium perborate aq. all | R | R | | | Barium carbonate | R | R | - | Green liquor | R | _ | R | Sodium phosphate aq. satura | | R | | | Barium chloride | N | N | _ | · | | _ | K | Sodium salts ag. | R | _ | | | Beer | R | R | N | Heptane | R | _ | - | Sodium sulphate | R | R | | | Benzene pure | N | N | N | Hydrobromic acid, aq. (up to | 20%) | R | - | Stannic salts aq. | R | _ | | | Benzoic acid (aqueous) all | R | R | R | N
Hydrochloric acid (20%) | С | С | _ | Stannous chloride | R | R | | | Benzoyl chloride | N | N | - | Hydrochloric acid (20%) Hydrochloric acid (up to 36%) | | N | _ | Stearic acid | R | - | | | Benzyl chloride | N | N | - | Hydrogen chloride gas wet | N | N | _ | Sulfite liquor | R | - | | | Black liquor-paper | R | <u>-</u> | N | Hydrocyanic acid | R | _ | R | Sulfur dioxide, dry | N | - | | | Bleach liquor (12.5% active Cl | | l | N | Hydrofluoric acid (10%) | R | _ | N | Sulfur dioxide, wet | R to N | - | | | Borox | R | - | R | Hydrofluoric acid (50%) | N | N | - | Sulfuric acid (15%) Sulfuric acid (50%) | R
R | R
C | | | Boric acid (aqueous) all | R
R | - | R
N | Hydrofluosilicic acid (25%) | - | N | - | Sulfuric acid (50%) Sulfuric acid (70%) | C | _ | t | | Bromine (aqueous) Bromo ethane | N | N | IN | Hydrogen peroxide, aq. 10 vo | | С | - | Sulfuric acid (70%) Sulfuric acid (>93%) | ŭ | N | - 1 | | Butanone | N | N | _ | Hypochlorous acid | R | - | N | ` ′ | | 1.4 | 1 | | 2-butoxyethanol | R | | _ | lodine, aq. | N | _ | N | Tannic acid | N | - | | | Butvric acetate | N | N | _ | Isobutyl alcohol | C | N | _ | Tanning liquor | R | - | | | Butyryl chloride | N | - | _ | Isobutyronitrite | N | - | - | Tartaric acid, aq.
Tetrahydrofurane | R
N | _ | | | Butyric acid (aqueous) all | N | N | N | Isopropyl acetate (100%) | N | - | - | Toluene | N N | _ | | | Calcium sales (aqueous) | R | - | R | Kerosene | R | _ | _ | Trichloroethylene pure | N | _ | | | Calcium hydroxide | R | - | R | Ketones | N | - | N | Trichlorobenzene | N | _ | | | Calcium hypochlorite | R | R | R | Kraft paper liquor | R | _ | C | Triethanolamine | R to N | R | | | Calcium chloride | R | R | _ | Lactic acid (25) | | | | Triethylene glycol | R | | 1 | | Calcium bromide | R | R | _ | Lactic acid (25) Linseed oil | R
R | -
N | N
N | Trisodium phosphate | R | _ | Τ | | Carbon disulfide | N | N | _ | | | IN | | Turpentine | N | _ | | | Carbon dioxide (wet or dry) | R | R | R | Magnesium salts | R | - | R | Uric acid | R | _ | + | | Carbon tetrachloride | N | N | N | Magnesium carbonate | R | R | - | Urine Urine | R | _ | ╁ | | Caustic potash (dry & solution | n) R | - | R | Magnesium chloride | R | R | - | | | | 1 | | Caustic soda (dry & solution) | R | - | R | Magnesium sulphate | R | R | –
D | Vinegar | R | - | | | Chloracetic acid | N | - | N | Maleic acid aq. (up to 100%) Mesityl oxide | R
N | -
N | R
- | Water, distilled, fresh, mine, | R | _ | | | Chlorine, gaseous, dry | N | - | N | 2-methoxyl ethanol | C | N | _ | salt, tap | | | + | | Chlorine, gaseous, moist | N | - | N | Methyl acetate | N | N | _ | White liquor | R | - | | | Chlorobenzene | N | N | N | Methyl chloride | N | - | N | Wines | R | - | t | | Chloroform pure | N | N | N | Methyl cyclohexanone | R | R | - | Xylene | N | N | | | Cloropropane | N | N | _
N | Methyl butyl ketone | R | C | _ | | | | | | Chromic acid (10%) | R | N | N | Methyl ethyl ketone | N | N | _ | Zinc chloride | 'R' | R | 1 | | Chromic acid (30%) | N | N | _
NI | Milk | R | R | R | | | | _ | | Chromic acid (50%) | N | - | N | Mineral oil | R | - | _ | LEGEND: | | | | | Citric acid, aqueous saturated | R | R | R | | ., | | | R = Satisfactory | | | | | | n | _ | | Niekalasit- | _ | | Г. | | | | | | Cod-liver oil
Copper salts, aqueous | R
R | R
- | -
R | Nickel salts
Nitric acid (5%) | R
R to C | –
N | R
N | C = Some Attac
N = Unsatisfacto | | | | ### ABS Pipe Complies with Building and Fire Codes Schedule 40 ABS pipe is primarily used in nonrated construction, such as single-family dwellings. When properly installed in compliance with building and fire codes, it can also be used in fire-rated construction, such as high-rise dwellings. #### HIGH SELF-IGNITION POINT Like many building materials, Schedule 40 ABS pipe will burn under certain conditions. It will not spontaneously combust; however heat and fire sources are essential. ABS pipe must be heated to over 871°F (465°C) before it will self-ignite. In comparison, the types of wood commonly used in home framing self-ignite around 500°F (260°C). In an out-of-control fire, temperatures reach well over 1,000°F (540°C), at which point all combustibles burn. ABS DWV pipe systems typically represent less than 1% of the total combustible products in wood-frame construction. #### FLAME SPREAD RESISTANCE Flame spread tests, such as the ASTM E-84 tunnel test, were designed to compare the flame spread characteristics of flat surface materials, such as draperies and finish materials. Since ABS DWV piping systems are installed behind walls, under floors and above ceilings, the test is not applicable. However, within a plumbing wall, ABS pipe starts to melt and collapse long before it burns, preventing flame spread up vertical stacks or along horizontal waste lines. #### FIRE-RATED CONSTRUCTION When properly installed, Schedule 40 ABS DWV systems are suitable for fire-rated wall, floor and ceiling assemblies. According to tests conducted by the National Bureau of Standards (NBS) and detailed in NBS Report Number 10342, ABS pipe that penetrates a non-combustible wall will not spread significant amounts of smoke or flame through the wall, provided that the pipe is installed correctly. #### **SMOKE AND TOXICITY** When installed as recommended, Schedule 40 ABS pipe produces little, if any smoke during the early stages of a fire. If the fire is large enough to destroy a building, ABS pipe will burn and produce black smoke. Like all combustible materials, Schedule 40 ABS pipe releases gaseous products when burned. Although no nationally recognized standard exists for measuring toxicity, testing indicates that gases released from burning styrene-based plastics, such as ABS, present no greater hazard than gases released from common building materials, such as the wood used in wall construction. Most plumbing codes reinforce building codes provisions by requiring that all pipe penetrations be made in such a manner as to protect the integrity of fire-rated building walls, floors, and ceilings. Model building codes specify that ABS pipe must be protected at penetration of fire-rated assemblies by a through penetration protection assembly that has been tested and rated in accordance with ASTM E 814. The important rating is the "F" rating for the through penetration assembly. The "F" rating must be a minimum of the hourly rating of the fire resistance-rated assembly which the ABS pipe penetrates. Various firestop devices and systems are commercially available. These products include: caulks, sealants, foams, putties, wraps, strips, restricting collars, composite sheets, and plastic pipe devices. #### SAFE INSTALLATION Two of the greatest fire dangers in plumbing come from the torch and lead pot, both of which are required to install metallic piping. ABS DWV systems don't require either one – eliminating a significant fire hazard. ### MANUFACTURERS OF FIRESTOP SYSTEMS AND MATERIALS INCLUDE: • Specified Technologies 200 Evans Way Somerville 200 Evans Way, Somerville, NJ 08876 1-800-992-1180 • Hilti, Inc. 5400 S 122nd E. Ave., Tulsa, OK 74121 1-800-879-8000 • 3M Fire Protection Products 3M Center, Bldg 207-1S, St. Paul, MN 55144-1000 1-800-328-1627 • ProSet Systems 1355 Capital Circle, Lawrenceville, GA 30243 1-800-262-5355 • The Rectorseal Corporation 2830 Produce Row, Houston, TX 77023-5822 1-800-231-3345 • Fire Stop Systems Inc. 1412 Derwent Way, Delta, British Columbia V3M6H9 1-800-810-1788 ## **ABS Pipe Installation Guidelines** #### STORAGE AND HANDLING You can store ABS pipe and fittings either inside or outside. Protect the material from direct sunlight as exposure to the sun can cause uneven expansion. Store ABS pipe on a level support to prevent sagging or bending. Although ABS pipe is tough, resilient and easy to handle, it's softer than metals and more prone to abrasion. Therefore, do not drag it over rough ground. #### **MEASURING** Planning ahead is very important when installing ABS pipe and fittings in DWV systems. These "systems" have built-in "pitch" or "fall," and require a high degree of accuracy in laying out and cutting pipe to exact lengths. Errors cannot be rectified with stress, heat or a hammer. When measuring, be sure to allow for depth of joints. Do not take measurements with dry pipe inserted part way into the dry fitting socket. Rather, measure to the full depth of the socket. Because of the fast set time of the solvent cement, it is often advisable to set up the installation dry and mark fittings for position or alignment, before making up the joint. #### **CUTTING** You can cut ABS pipe with appropriate pipe cutters, any crosscut saw or a power saw equipped with a carbidetip or abrasive blade. Special plastic-pipe cutter wheels are available to fit standard cutters. You can also use lightweight, quick-adjusting cutters designed exclusively for plastic piping. Do not use pipe cutters with dull wheels – especially wheels used previously to cut metal – as they will exert excessive pressure, causing larger shoulders and burrs that you will need to remove. ABS pipe requires a square cut for good joint integrity. To ensure a square cut, use a power saw on large jobs and a miter box on small jobs. If these are not available, scribe the pipe and cut to the mark. After cutting ABS pipe, ream it inside and chamfer it outside to remove burrs, shoulders and ragged edges. #### PIPE FIT ABS pipe is manufactured to close tolerances to ensure a satisfactory "interference" fit between pipe and socket during assembly. Manufacturers design these interference fits right into the sockets of plastic fittings. Use only ABS pipe has a higher expansion and contraction rate than metallic pipe. Under normal circumstances (that is, relatively short runs), this is not an issue. For industrial applications, with longer runs and higher capacity, it may be necessary to plan for expansion. Various methods – including expansion joints, guides, clamped flexible connectors, hubless couplings and offset piping arrangements – can be employed to control expansion and contraction. Obtain specific information from ABS pipe and fitting manufacturers. #### **SUPPORTS** ABS pipe should be supported similarly to other piping systems using pipe hangers. Avoid hangers that may cut or compress pipe and tight clamps or straps which prevent pipe from moving or expanding. Support piping at intervals of not more than four feet. In addition, support pipe at branches, at changes of direction, and when using large fittings to reduce stress. Although supports should provide free movement, they must restrict upward movement of lateral runs so a reverse grade, which could back up the system, is not created on branch piping. Holes made for pipe through framing members must be sized to allow for free movement. Use supports for vertical piping at each floor level, or as required by expansion/ contraction design. Mid-story guides can provide greater stability. #### REDUCING NOISE To reduce ABS pipe noise in DWV systems, follow good plumbing practices. Carefully locate plumbing wall stacks to avoid critical areas, such as living rooms. Use a plumbing "wall" of adequate thickness to properly accommodate the system without restriction. Support pipe properly and ensure that it doesn't touch plaster-board or panel walls to avoid setting up an echo chamber effect. Wrap stacks and piping in critical wall spaces with sound-deadening material, or pack the wall with insulation. Use long radius fittings and anchor risers between floors and ceilings to prevent noise. #### **JOINING** #### **ABS DWV** pipe and fittings are joined with solvent cement that temporarily soften the joining surfaces. This brief softening period enables you to seat the pipe into the socket's interference fit. The softened surfaces then fuse together and joint strength develops as the solvents evaporate. The resulting joint is stronger than the pipe itself. Because of the conditions involved, it's important to move quickly and efficiently when joining ABS pipe. Before you cement a joint, make sure the pipe and fittings are free of dust, dirt, water and oil. To ensure proper alignment in the final assembly, carefully mark for position any fittings to be rolled or otherwise aligned. When cementing, use only an ABS solvent cement that meets ASTM Standard D2235. (Be sure to seal cement cans when not in use, as the cement quickly thickens and hardens.) Applicators furnished with the cement are satisfactory, as are ordinary bristle paint-brushes. For fast application, the width of the applicator should be at least half the diameter of the pipe. Apply a light, even coat in the socket of the fitting and on the pipe. Immediately insert the pipe all the way to the socket bottom and give the pipe a one-quarter turn. Hold the joint together until a tight set is attained. A proper joint normally shows a bead around its entire perimeter. After setting, wipe excess cement from the pipe. Curing time depends on weather, application technique, the cement being used and the degree of interference fit between pipe and fitting. #### JOINING TO OTHER MATERIALS You can join ABS pipe to other sewer materials by using proper transition adapters or alternative methods, as approved by local plumbing codes. Transition joints between ABS and PVC non-pressure piping components can be joined with solvent cement specified in ASTM D3138. This cement is for use only at the single transition joint; don't use it to mix ABS and PVC pipes and fittings within a system. ABS pipe with transition fittings can be caulked with lead into cast iron without damage. ABS plastic absorbs heat so slowly that the lead cools before distorting the ABS adapter or pipe end. You can also connect ABS pipe to copper with transition fittings. #### THREADED CONNECTIONS Never thread or tap Schedule 40 ABS pipe or fittings; instead, use molded threaded adapters. Seal threads only with listed thread tape or thread lubricant. Never use pipe dope: some compounds may soften the pipe surface, and under compression, that softening can set up internal stress corrosion. When installing, turn threads as tightly as possible by hand. Then, with a strap wrench, further tighten the joint one full turn. Do not overturn. #### UNDERGROUND INSTALLATIONS For underground installations such as building drains, branch lines and sewers, piping should be uniformly supported over its entire length on firm, stable material. Start by grading all trenches to eliminate stone and pockets. Then, fill holes with clean fill, and tamp it properly. Once you have installed the pipe, backfill along its sides with selected fill and tamp carefully to protect pipe alignment. Then backfill on top of the pipe with selected fill to a depth of 12 inches. The trench can then be filled to the top in the usual manner. #### PROTECTION FROM FREEZING When you need to protect traps and fixtures from freezing, do not use alcohol or petroleum products. Instead, use only one of the following solutions: - Approved plastic pipe antifreeze packaged for this purpose - Sixty percent, by mass, of glycerin in water - Twenty-two percent, by mass, of magnesium chloride in water - Strong solutions of common table salt (sodium chloride) # 10 Quick Installation Steps Measure pipe from bottom or shoulder of each socket into which pipe is to fit. Cut pipe to required length, making sure cut is square. (See page 10 for a listing of proper tools.) Ream inside and chamfer outside of pipe to eliminate all burrs. Sand lightly. Clean all dirt, moisture, and grease from pipe and fitting socket, using a clean, dry cloth. Check dry fit of pipe in fitting socket. Pipe should enter fitting socket to between 1/3 and 3/4 of the socket depth. Be sure to use only approved types of fittings and adapters. Using a brush or dauber-type device, apply a light coat of ASTM D2235 ABS solvent cement to the inside of the fitting socket, using straight, outward strokes. Apply solvent cement to the outside of the pipe in a similar manner. Time is important at this stage: apply cement quickly and do not allow it to set before the joint is put together. Be especially quick when the temperature is over 100°F (38°C) or humidity is over 60 percent. Always follow safe-handling practices when using solvent cements: use in a well-ventilated area, avoid skin contact (wear gloves) and do not use near heat, sparks or open flame. Immediately insert pipe into fitting socket, giving the pipe a one-quarter turn and making sure it goes all the way to the socket bottom. Hold the joint together until a tight set is attained. Check cement bead around joint. A proper joint will normally show a bead around its entire perimeter. Any gaps may indicate insufficient cement or the use of light-bodied cement on larger diameters where heavy-bodied cement was required. After setting, wipe excess cement from the pipe. Don't move the system until the joints have cured (set) at least as long as recommended by the solvent manufacturer. MEK-based solvent cement conforming to ASTM D2235 usually sets up in two minutes at about 70°F (21°C), with faster setting at higher temperatures and slower at lower temperatures. An ABS pipe stack can usually be tested within one hour after the last joint is completed. At this point, a water test can be done to test the integrity of each joint. Do not air test, as it is not recommended for ABS pipe systems. Check local code requirements for clarification. ### Commonly Asked Questions About ABS Pipe #### QUESTION: WHAT IS THE FLAME SPREAD RATING FOR ABS PIPE? #### ANSWER: Flame spread tests, such as the ASTM E-84 tunnel test, are designed to test the flame spread characteristics of flat surface materials, such as draperies and finish materials. Since ABS DWV piping systems are installed behind walls, under floors and above ceilings, flame spread tests are not appropriate. #### QUESTION: WHAT STANDARDS APPLY TO ABS PIPE AND FITTINGS? #### ANSWER: A variety of standards published by the following organizations: - American National Standards Institute (ANSI) - American Society for Testing and Materials (ASTM) - Canadian Standards Association (CSA) - National Sanitation Foundation International (NSF). - Building Officials and Code Administrators (BOCAI) - National Plumbing Code - International Association of Plumbing & Mechanical Officials (IAPMO) - Uniform Plumbing Code - International Plumbing Code (IPC) - Council of America Building Officials (CABO) - One and Two Family Dwelling Code - National Association of Plumbing, Heating and Cooling Contractors (NAPHCC) - National Standard Plumbing Code - Southern Building Code Congress International (SBCCI) - Standard Plumbing Code ABS pipe and fittings are also accepted by model codes, including National Plumbing Code and listed by third party certifiers including CSA, NSF International and IAPMO. #### QUESTION: CAN ABS PIPING BE USED FOR UNDER-GROUND DWV APPLICATIONS? #### ANSWER: Yes. ABS pipe when properly installed, can withstand loads of soil, under slab foundations and high surface loads without collapse, cracking or denting. #### QUESTION: WHAT KIND OF CHEMICAL RESISTANCE DOES ABS PIPE PROVIDE? #### ANSWER: ABS pipe offers excellent chemical resistance in many applications. It is resistant to any solution of ammonium chloride, calcium chloride or sodium hydroxide, all of which are corrosive to many metals. ABS pipe is also unaffected by water, aqueous salt solutions, mineral acids and alkalis. #### **QUESTION:** HOW DURABLE IS ABS PIPING? #### ANSWER: Super-tough ABS pipe withstands earth loads and shipping damage. It has excellent resistance to breaking, scratching, chipping and wear, even at low temperatures. #### **QUESTION:** WILL HOT WATER DAMAGE ABS SYSTEMS? #### ANSWER: ABS pipe performs in a wide range of temperatures, from -40°F to 180°F. In addition, it absorbs heat slowly and is unaffected by the high temperatures of water discharged from dishwashers and washing machines. #### QUESTION: WILL ABS PIPE RUST OR CORRODE? #### ANSWER: ABS pipe does not rot, rust, corrode or collect waste. Its smooth interior finish ensures superior flow. ### QUESTION: ARE THERE COST ADVANTAGES IN USING ABS PIPE? #### ANSWER: ABS pipe is not only less expensive than metal pipe, but also more economical to install, due to a one-step solvent cementing process. In addition, it takes less time to rough in a DWV system with ABS pipe than with any other DWV material. #### QUESTION: IS ABS PIPE EASY TO INSTALL? #### ANSWER: Yes, even for the do-it-yourselfer. ABS pipe is so lightweight that one person can load and unload it. With a one-step solvent cementing process, ABS pipe is easy to join. It can also be cut with a variety of readily available tools. #### QUESTION: CAN ABS PIPE AND PVC PIPE AND FITTINGS BE USED WITHIN THE SAME SYSTEM? #### ANSWER: It's not recommended. However, ABS pipe and PVC pipe and fittings can be joined when connecting building drain to building sewer materials, if you use proper transition cement and adapters or other methods as approved by local plumbing codes. #### LONG-LASTING SCHEDULE 40 ABS PIPE - Sets the standard for DWV applications - Is easier and less expensive to install - Features superior flow due to smooth interior finish - Does not rot, rust, corrode or collect waste - Withstands earth loads and shipping (with proper handling) - Resists mechanical damage, even at low temperatures - Performs at an operational temperature range of -40°F to 180°F - Is lightweight (one person can load and unload) - Takes less time to rough in than other DWV materials # PPFA PLASTIC PIPE AND FITTINGS ASSOCIATION 800 Roosevelt Road, Building C, Suite 20, Glen Ellyn, IL 60137-5833 (630) 858-6540 • Fax (630) 790-3095