

300 LB IMPACT TESTING

CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

October 15, 2020

Mr. John Ruprecht Clear View Glass Railings 737 Quentin Avenue South Lakeland, MN 55043

Re: Field test of Clear View Glass Railings "Hercules Glass" guardrail panel AET Project #: 05-20608

Dear Mr. Ruprecht,

This letter reports tests performed on Clear View's Hercules Glass panel on April 21, 2020 by Clear View and your agents at 1141 120th Street in Roberts, Wisconsin. These tests were the first of a series of tests that included the dynamic loading test described below, and vertical and horizontal static tests. All tests were performed to provide test data that the panels meet International Building Code (IBC) requirements.

The panel tested was a 13mm thick tempered and laminated glass panel with the brand name Hercules Glass. It measured 13mm thick x 39.37" tall x 60" wide, and is supported by two metal "spigots", each located 12" inside a side edge of the panel (spaced 36" apart). The panel are secured in slots within the spigots, and the spigots are bolted to the supporting structure. The total height of the panel and spigots is 42".

The dynamic testing involved hanging 300# sandbags against the side of the panel at the panel's top edge. The sandbags were pulled back 33" and released, causing the sandbags to swing into the top of the panel, simulating a dynamic horizontal guardrail load – a person or object falling into the panel. The panel deflected approximately 4" and returned to its original shape, without experiencing any damage.

Don't hesitate to contact us with questions about this testing or any other aspects of this evaluation program.

Sincerely, American Engineering Testing, Inc.

Chris Hartnett, PE Principal Engineer MN Lic. No. 42371 Phone: 651-647-2750 <u>chartnett@amengtest.com</u>

300 LB IMPACT TEST

This is an impact test of 60" x 39.37" x .53" thick CVGR Hercules tempered laminated glass panel mounted in two 316 solid core stainless steel spigots. Spigots are centered on glass 36" apart, 12" from end of glass. Plastic bags are weighted with 300 lbs of media, pulled back 36" from CVGR glass panel and then released to free fall to impact the top center of the CVGR panel. There is no damage or failure of the CVGR Hercules Glass panel or spigots from this 300 lb impact.

VIDEO STILLS ON REVERSE SIDE >

CVGR HERCULES GLASS 300 LB IMPACT TEST VIDEO STILLS

LOAD TESTING

CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

November 13, 2020

Mr. John Ruprecht Clear View Glass Railings 737 Quentin Avenue South Lakeland, MN 55043

Re: Code Requirements & Static Test of Clear View Glass Railings "Hercules Glass" guardrail panel AET Project #: 05-20608

Dear Mr. Ruprecht,

This letter reports building code requirements for guardrails; it also reports test methods and results for static tests performed on Clear View's Hercules Glass panel.

The International Building Code (IBC) and International Residential Code (IRC) are "model codes" created by the International Code Council, intended to be used by states and municipalities as they publish their own building codes. Section 1607.8 of the IBC requires that "handrails and guards shall be designed to resist a linear load of 50 plf." It also requires the system to resist a 200# concentrated load that produces the "maximum load effect" on any element within the system. The 2018 IRC Table R201.5 extends this requirement into residential construction. It is understood within the building design industry that laterial loads applied to the top of the panel create the maximum load effect; structural design assumes this loading condition.

Section 1607.8 of the IBC also refers to IBC section 2407 <u>Glass in Handrails and Guards</u> that adds a requirement for all-glass handrails and guards to "be laminated glass constructed of fully tempered or heat-strengthened glass"; this requirement was added in the 2015 IBC code cycle. Section 2407.1.1 adds the significant requirement: "a design factor of four shall be used for safety". This addition bumps up the linear load to 200 plf and the concentrated load to 800#..

Exterior glass guardrail panels are designed to resist two load types: wind loads, and "live" loads such as a person or object pushing on or striking the panel from the side or from above. Wind loading on a panel can vary greatly based on location, terrain (wooded vs open) and elevation above ground; these are governed by publication ASCE 7 (American Society of Civil Engineers) <u>Minimum Design Loads</u> for Buildings and Other Structures. Wind speeds of 115 psf are used to calculate wind pressures against the glass, which generally vary from 17 psf (2nd story in wooded area) to 35 psf (30 stories tall in open terrain). The wind speeds required to match the stresses created by the 800# point load are 192 mph for the 42" tall panel and 215 mph for the 36" tall panel; these are only seen in a Category 5 hurricane or a tornado. Therefore, the 800# horizontal point load requirement is the worst-case scenario for the panels. Calculation methods to arrive at these values include computer modeling using finite element analysis,

Mr. John Ruprecht – Clear View Glass Railings AET Project No. 05-20608 October 13, 2020 Page 2 of 4

using criteria specific to Clear View's panels and support configuration.

Hercules Glass Testing

Testing was performed on the Hercules Glass panel by Clear View's glass supplier, to simulate the forces created by 800# horizontal and vertical point loads on the panel (loads are not required to be simultaneous). The vertical load test is fairly straightforward and is shown in photo 1. Note: the intent was to load the panel to failure; however, the testers ran out of sandbags at 2,520 pounds, without failure.

Photo 1: Panel loaded vertically with 2,520 pounds.

Given the difficulty of pushing an 800# load horizontally against the panel, a test rig was set up that supports the panel on its side and places sandbags vertically on the panel. The panel is supported 28" from the top of panel (creating a 28" cantilever), with a heavy counterweight holding down the bottom of the panel mounted in its spigots. Sandbags were placed at the top edge of the panel until failure. See Diagram 1 and photo 2. The panel failed after one minute with 820 pounds loaded on its edge, which is equivalent to 547 pounds for a 42" tall panel. Using a finite element computer model, it was determined that the stresses caused by the 547 pound point load are equivalent to those caused by a 147 mph wind.

Mr. John Ruprecht – Clear View Glass Railings AET Project No. 05-20608 October 13, 2020 Page 3 of 4

Diagram 1: Test rig lying on its side, looking from above, showing panel supported at 28" and at bottom of panel

Photo 2: Loading of panel with sandbags, simulating horizontal force

Mr. John Ruprecht – Clear View Glass Railings AET Project No. 05-20608 October 13, 2020 Page 4 of 4

Due to the laminate construction of the panels (similar to a vehicle windshield), the panel broke into small pieces that were retained within the panel, preventing dangerous flying glass debris. See photo 3.

Photo 3: Panel after failure, showing all glass intact within laminate structure.

This test shows that the panel meets the intent to create a strong and safe barrier that can withstand reasonable loading (factor of safety of 2.5), and does not explode with dangerous glass shards during excessive loading.

Don't hesitate to contact us with questions about this testing or any other aspects of this evaluation program.

Sincerely, American Engineering Testing, Inc.

Chris Hartnett, PE Principal Engineer MN Lic. No. 42371 Phone: 651-647-2750 chartnett@amengtest.com

CALIFORNIA PROFESSIONAL ENGINEERS TESTING APPROVAL

APPLIED MATERIALS & ENGINEERING, INC. 980 41st Street Tel: (510) 420-8190 Oakland, CA 94608 FAX: (510) 420-8186 e-mail: info@appmateng.com

May 25, 2021

Project No. 1210339C

Mr. John Ruprecht CLEAR VIEW GLASS RAILINGS COMPANY 737 Quentin Avenue South Lakeland, MN 55043

Email: John@CVGRailings.com

Subject: ClearView Glass Railings

Dear Mr. Ruprecht:

This letter report summarizes our review and findings of the American Engineering Testing, Inc. (AET) reports dated October 15, 2020 and November 13, 2020 regarding Clear View's Hercules Glass panel testing.

The above reports are attached as an Appendix.

FINDINGS

AET determined that a 200 pounds (lbs) point load would be the required design load for this type of application, ie. glass handrails. This calculation is based on IBC (International Building Code) Section 1607.8.1.1.

I. October 15, 2020 Report

AET performed a dynamic test on a 60" x 40" glass panel. A pendulum load of 300 pounds was allowed to impact the panel at a height of 36" from the top of the panel. No damage was observed to the glass panel.

II. November 13, 2020 Report

AET performed static testing with a load of 800 pounds (this has a factory of safety of 4) vertical point load on a 60" x 40" glass panel. The tested panel withstood 800 lbs without failure.

AET also performed static testing with a load of 800 pounds horizontal (out-of-plane) load on the glass panel. The panel resisted a load of up to 820 pounds, loaded on its edge.

Mr. John Ruprecht CLEAR VIEW GLASS RAILINGS COMPANY ClearView Glass Railings May 25, 2021 Page 2

CONCLUSION

The calculations and tests performed by AET conform to the applicable industry standards and are valid for the stated application.

Please call if you have any questions regarding the above.

Sincerely,

nFESSI0 Armen Tajirian, Ph.D., SE Principal S ANA Q/30

APPLIED MATERIALS & ENGINEERING, INC.

Appendix

CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

October 15, 2020

Mr. John Ruprecht Clear View Glass Railings 737 Quentin Avenue South Lakeville, MN 55043

Re: Field test of Clear View Glass Railings "Hercules Glass" guardrail panel AET Project #: 05-20608

Dear Mr. Ruprecht,

This letter reports tests performed on Clear View's Hercules Glass panel on April 21, 2020 by Clear View and your agents at 1141 120th Street in Roberts, Wisconsin. These tests were the first of a series of tests that included the dynamic loading test described below, and vertical and horizontal static tests. All tests were performed to provide test data that the panels meet International Building Code (IBC) requirements.

The panel tested was a 13mm thick tempered and laminated glass panel with the brand name Hercules Glass. It measured 13mm thick x 39.37" tall x 60" wide, and is supported by two metal "spigots", each located 12" inside a side edge of the panel (spaced 36" apart). The panel are secured in slots within the spigots, and the spigots are bolted to the supporting structure. The total height of the panel and spigots is 42".

The dynamic testing involved hanging 300# sandbags against the side of the panel at the panel's top edge. The sandbags were pulled back 33" and released, causing the sandbags to swing into the top of the panel, simulating a dynamic horizontal guardrail load – a person or object falling into the panel. The panel deflected approximately 4" and returned to its original shape, without experiencing any damage.

Don't hesitate to contact us with questions about this testing or any other aspects of this evaluation program.

Sincerely, American Engineering Testing, Inc.

U Wartel

Chris Hartnett, PE Principal Engineer MN Lic. No. 42371 Phone: 651-647-2750 chartnett@amengtest.com

300 LB IMPACT TEST

This is an impact test of 60" x 39.37" x .53" thick CVGR Hercules tempered laminated glass panel mounted in two 316 solid core stainless steel spigots. Spigots are centered on glass 36" apart, 12" from end of glass. Plastic bags are weighted with 300 lbs of media, pulled back 36" from CVGR glass panel and then released to free fall to impact the top center of the CVGR panel. There is no damage or failure of the CVGR Hercules Glass panel or spigots from this 300 lb impact.

VIDEO STILLS ON REVERSE SIDE >

CVGR HERCULES GLASS 300 LB IMPACT TEST VIDEO STILLS

CLEARVIEW GLASS RAILINGS • 737 Quentin Avenue South • Lakeland, MN 55043 • ClearViewGlassRailings.com

• CONSULTANTS
• ENVIRONMENTAL
• GEOTECHNICAL
• MATERIALS
• FORENSICS

November 13, 2020

Mr. John Ruprecht Clear View Glass Railings 737 Quentin Avenue South Lakeland, MN 55043

Re: Code Requirements & Static Test of Clear View Glass Railings "Hercules Glass" guardrail panel AET Project #: 05-20608

Dear Mr. Ruprecht,

This letter reports building code requirements for guardrails; it also reports test methods and results for static tests performed on Clear View's Hercules Glass panel.

The International Building Code (IBC) and International Residential Code (IRC) are "model codes" created by the International Code Council, intended to be used by states and municipalities as they publish their own building codes. Section 1607.8 of the IBC requires that "handrails and guards shall be designed to resist a linear load of 50 plf." It also requires the system to resist a 200# concentrated load that produces the "maximum load effect" on any element within the system. The 2018 IRC Table R201.5 extends this requirement into residential construction. It is understood within the building design industry that laterial loads applied to the top of the panel create the maximum load effect; structural design assumes this loading condition.

Section 1607.8 of the IBC also refers to IBC section 2407 <u>Glass in Handrails and Guards</u> that adds a requirement for all-glass handrails and guards to "be laminated glass constructed of fully tempered or heat-strengthened glass"; this requirement was added in the 2015 IBC code cycle. Section 2407.1.1 adds the significant requirement: "a design factor of four shall be used for safety". This addition bumps up the linear load to 200 plf and the concentrated load to 800#..

Exterior glass guardrail panels are designed to resist two load types: wind loads, and "live" loads such as a person or object pushing on or striking the panel from the side or from above. Wind loading on a panel can vary greatly based on location, terrain (wooded vs open) and elevation above ground; these are governed by publication ASCE 7 (American Society of Civil Engineers) <u>Minimum Design Loads</u> for Buildings and Other Structures. Wind speeds of 115 psf are used to calculate wind pressures against the glass, which generally vary from 17 psf (2nd story in wooded area) to 35 psf (30 stories tall in open terrain). The wind speeds required to match the stresses created by the 800# point load are 192 mph for the 42" tall panel and 215 mph for the 36" tall panel; these are only seen in a Category 5 hurricane or a tornado. Therefore, the 800# horizontal point load requirement is the worst-case scenario for the panels. Calculation methods to arrive at these values include computer modeling using finite element analysis,

Mr. John Ruprecht – Clear View Glass Railings AET Project No. 05-20608 October 13, 2020 Page 2 of 4

using criteria specific to Clear View's panels and support configuration.

Hercules Glass Testing

Testing was performed on the Hercules Glass panel by Clear View's glass supplier, to simulate the forces created by 800# horizontal and vertical point loads on the panel (loads are not required to be simultaneous). The vertical load test is fairly straightforward and is shown in photo 1. Note: the intent was to load the panel to failure; however, the testers ran out of sandbags at 2,520 pounds, without failure.

Photo 1: Panel loaded vertically with 2,520 pounds.

Given the difficulty of pushing an 800# load horizontally against the panel, a test rig was set up that supports the panel on its side and places sandbags vertically on the panel. The panel is supported 28" from the top of panel (creating a 28" cantilever), with a heavy counterweight holding down the bottom of the panel mounted in its spigots. Sandbags were placed at the top edge of the panel until failure. See Diagram 1 and photo 2. The panel failed after one minute with 820 pounds loaded on its edge, which is equivalent to 547 pounds for a 42" tall panel. Using a finite element computer model, it was determined that the stresses caused by the 547 pound point load are equivalent to those caused by a 147 mph wind.

Mr. John Ruprecht – Clear View Glass Railings AET Project No. 05-20608 October 13, 2020 Page 3 of 4

Diagram 1: Test rig lying on its side, looking from above, showing panel supported at 28" and at bottom of panel

Photo 2: Loading of panel with sandbags, simulating horizontal force

Mr. John Ruprecht – Clear View Glass Railings AET Project No. 05-20608 October 13, 2020 Page 4 of 4

Due to the laminate construction of the panels (similar to a vehicle windshield), the panel broke into small pieces that were retained within the panel, preventing dangerous flying glass debris. See photo 3.

Photo 3: Panel after failure, showing all glass intact within laminate structure.

This test shows that the panel meets the intent to create a strong and safe barrier that can withstand reasonable loading (factor of safety of 2.5), and does not explode with dangerous glass shards during excessive loading.

Don't hesitate to contact us with questions about this testing or any other aspects of this evaluation program.

Sincerely, American Engineering Testing, Inc.

a Narla res

Chris Hartnett, PE Principal Engineer MN Lic. No. 42371 Phone: 651-647-2750 <u>chartnett@amengtest.com</u>

FLORIDA HURRICANE TESTING

CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

November 17, 2020

Mr. John Ruprecht Clear View Glass Railings 737 Quentin Avenue South Lakeland, MN 55043

Re: Florida Wind Load Requirements for Wind-Borne Debris Regions, and Considerations for "Hercules" Glass Guardrail Panel AET Project #: 05-20608

Dear Mr. Ruprecht,

This letter reports the findings of our review of the Florida Building Code (FBC) wind requirements for Wind-Borne Regions, as defined by the FBC. We compare these requirements to the published and tested strength of the Hercules Glass Guardrail Panel, model CVGR 1001 FWP, and provide conclusions regarding panel design requirements to meet specific portions of the FBC code.

The Florida Building Code (FBC) Section 2407 addresses glass used in handrails and guards; it specifies materials, loads, support conditions and wind-borne debris regions. According to the FBC and in compliance with Category II of the Consumer Product Safety Commission (CPSC) and Class A of ANSI Z97.1, glass used in guardrails must be laminated glass constructed of fully tempered or heat strengthened glass and tested for its water penetration resistance, wind loading, impact, durability, thermal properties, and mechanical performance. It is our understanding that the panel is laminated and fully tempered. Our analysis addresses only the wind loading and impact requirements.

The FBC follows the International Building Code (IBC) requirements for wind loads, with ultimate (factored) wind speeds up to 180 mph; this is significantly higher than most areas within the United States. See the attached reference maps for determining the nominal ground wind speed from the Florida Building Code.

Our analysis converted the 180 mph required factored wind speed into a stress, using accepted analysis techniques, then compared this to the published (and tested) capacity of the panels. The American Society of Civil Engineers (ASCE) Standard 7-10, Chapter 29, provides the analysis method to convert wind speed (in mph) to pressure (in psf). Using Exposure Category C (open terrain) and a height of 100 feet above ground, a 180 mph factored wind produces a calculated pressure of 54 psf. This was plugged into a finite element model (FEM), using Risa-3D software (version 10.0.1), that models the 60" x 39" x 13mm tempered and laminated panels, supported on three "spigot" supports. The model generated a 5,500 psi principal axis stress (σ) in the panel.

Mr. John Ruprecht – Clear View Glass Railings AET Project No. 05-20608 November 17, 2020 Page 2 of 3

The glass used in the panels has a published capacity of 10,000 psi tensile strength. Using the FEM, the pressure was increased until the capacity was reached, which was 100 psf. Plugging this into the ASCE 7-10 equations yields a service wind speed of 155 mph, or 250 mph factored wind speed. This is higher than the FBC's 180 mph factored wind speed requirement.

For building envelope glazing in wind-borne debris regions, glass that is part of a building envelope must be tested for impact resistance in accordance with American Society for Testing and Materials (ASTM) E1996. This requirement protects a closed building envelope from being penetrated and prevents high wind pressures from filling the building, potentially blowing out windows and lifting the roof off the building. Because these panels are not part of the building enclosure, damage from windborne debris would not penetrate the enclosure and its structural elements. Therefore, this test is not required for the panels used as a guardrail system.

FBC Section 2407.1.2 requires that all panels "shall be supported by a minimum of three glass balusters or shall be otherwise supported to remain in place should one baluster panel fail". We interpret this to mean that the panels will require three spigot supports, which is an increase from two supports in your standard panels. FBC Section 2407.1.2 also includes an exception that states, "A top rail shall not be required where the glass balusters are laminated glass with two or more glass plies of equal thickness and the same glass type when approved by the building official". We understand the panel meets this exception, so a top rail is not required.

In summary, based on our understanding of the FBC requirements, our conclusions are as follows:

- 1. Wind pressure previous testing confirms that the panels meet the 180 mph factored wind speed requirement.
- 2. The panels do not require wind debris projectile testing.
- 3. Each panel requires three support points to the structure.
- 4. A top rail is not required for these panels.

Our calculations and computer model information and output is available upon request. Please call or email us to discuss this analysis or any portion of the project to evaluate your panels.

Sincerely, American Engineering Testing, Inc.

Chris Hartnett, PE* Principal Engineer *MN, WI, AL, MD, MO, NC, ND, OH, PA, TN VA Phone: 651-647-2750 chartnett@amengtest.com

Mr. John Ruprecht – Clear View Glass Railings AET Project No. 05-20608 November 17, 2020 Page 3 of 3

Daniel J. Larson, PE

Principal Engineer Florida License #70286 Phone: 651-659-1337 dlarson@amengtest.com

Attachment: FBC Section 1609.3 - Ultimate Design Wind Speed Map

STRUCTURAL ASSESSMENT FOR NORTH CAROLINA CODE OFFICIALS

CONSULTANTS

- ENVIRONMENTAL
- GEOTECHNICAL
- MATERIALS
- FORENSICS

St. Paul, MN Duluth, MN Mankato, MN Marshall, MN Rochester, MN Williston, ND Pierre, SD Rapid City, SD Sioux Falls, SD Wausau, WI Sheridan, WY Gillette, WY Casper, WY

CLEARVIEW GLASS RAILINGS – STRUCTURAL ASSESSMENT FOR NORTH CAROLINA CODE OFFICIALS

AET Project No. 05-20608

STRUCTURAL TESTING, FINITE ELEMENT ANALYSIS AND CODE EVALUATION

MARCH 3, 2021

PREPARED FOR: MR. JOHN RUPRECHT CLEAR VIEW GLASS RAILINGS 737 QUENTIN AVENUE SOUTH LAKELAND, MN 55043

PREPARED BY: CHRIS HARTNETT, PE*

*MINNESOTA AND WISCONSIN

CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

March 2, 2021

Mr. John Ruprecht Clear View Glass Railings 737 Quentin Avenue South Lakeland, MN 55043

Re: Wind Load Requirements for Wind-Borne Debris Regions, and Considerations for "Hercules" Glass Guardrail Panel AET Project #: 05-20608

Dear Mr. Ruprecht,

This letter reports the findings of our review of the North Carolina wind requirements for Wind-Borne Debris Regions, as described by North Carolina Building Code Section 1609. These requirements closely follow ASCE 7. We compare these requirements to the published and tested strength of the Hercules Glass Guardrail Panel, model CVGR 1001 FWP, and provide conclusions regarding panel design requirements to meet specific portions of the NCBC code.

Panel Construction

The North Carolina State Building Code (NCBC) Section 2407 addresses glass used in handrails and guards; it specifies materials, loads, support conditions and wind-borne debris regions. According to the NCBC and in compliance with Category II of the Consumer Product Safety Commission (CPSC) and Class A of ANSI Z97.1, glass used in guardrails must be laminated glass constructed of fully tempered or heat strengthened glass and tested for its water penetration resistance, wind loading, impact, durability, thermal properties, and mechanical performance. It is our understanding that the panel is laminated and fully tempered.

Panel Support

NCBC Section 2407.1.2 requires that all panels "shall be supported by a minimum of three glass balusters or shall be otherwise supported to remain in place should one baluster panel fail". We interpret this to mean that the panels will require three spigot supports. The Hercules Glass Guardrail Panel is available with three spigots, where required by North Carolina Building Code.

The stainless steel spigots have been reviewed to confirm they possess the strength to support the shear and bending forces placed on them by the glass panels. When three spigots support the panels, they have sufficient capacity to resist wind loads required by the North Carolina Building Code. To meet the 4 * multiplier for live loads shown in 2015 IBC section 2407.1.1 (required by some municipalities) a

Mr. John Ruprecht – Clear View Glass Railings AET Project No. 05-20608 March 2, 2021 Page 2 of 3

high strength cement is required between the glass and the spigot, to increase the friction coefficient and the spigot "gripping" strength of the panel.

The code-mandated wind and live load forces create an overturning force through the panels and spigots that is resisted by the supporting structure. Using the diagram provided by ClearView Glass Railings, showing 3.149" between two bolt holes between the spigot and the supporting structure, the hold down force for each bolt is 2,500#. A 3/8" diameter A354 structural bolt has sufficient capacity to resist this force. A review of the existing structure to support these loads is beyond the scope of this document, and is left for the project Structural Engineer of Record (SER) to certify.

NCBC Section 2407.1.2 includes an exception that states, "A top rail shall not be required where the glass balusters are laminated glass with two or more glass plies of equal thickness and the same glass type when approved by the building official". We understand the panel meets this exception; therefore, a top rail is not required.

Wind Loading vs. Panel Capacity

The NCBC follows the International Building Code (IBC) requirements for wind loads, with ultimate (factored) wind speeds up to 160 mph. These panels were tested to 180 mph for wind loads across the Southeast US. Table 1609.3.1 converts this to 139 psf for unfactored loading, which was used in the analysis. See Attachment 1 for nominal ground wind speed reference maps from the North Carolina Building Code.

The American Society of Civil Engineers (ASCE) Standard 7-10, Chapter 29, provides the analysis method to convert wind speed (in mph) to pressure (psf) against the glass panel. Using Exposure Category C (open terrain) and a height of 100 feet above ground; a 139 mph wind produces a calculated pressure of 81psf. See Attachment 2. The three distinct support points, "spigots", for these panels creates stress concentrations around the supports that are best modeled using a finite element model (FEM). A FEM model was created for this panel using Risa-3D software (version 10.0.1), that modeled a 60" wide x 39" tall x 13mm thick tempered and laminated panel, with a 81psf surface load applied. The model generated a 15,979 psi principal axis stress (σ) in the panel. See Attachment 3.

The glass used in the panels was tested to determine its structural capacity, using a static load applied to a test specimen. The specimen was loaded to failure, and the loading was applied to the FEM to determine the equivalent stresses. The failure stress was 35,767 psi. This modeling shows that the panels have calculated factor-of-safety of 2.24. See Attachment 4.

Impact Resistance

For building envelope glazing in wind-borne debris regions, glass that is part of a building envelope must be tested for impact resistance in accordance with American Society for Testing and Materials (ASTM) E1996. This requirement protects a closed building envelope from being penetrated and prevents high wind pressures from filling the building, potentially blowing out windows and lifting the roof off the building. Because these panels are not part of the building enclosure, damage from wind-

Mr. John Ruprecht – Clear View Glass Railings AET Project No. 05-20608 March 2, 2021 Page 3 of 3

borne debris would not penetrate the enclosure and its structural elements. Therefore, this test is not required for the panels used as a guardrail system.

Summary

Based on our understanding of the NCBC requirements, our conclusions follow:

- 1. Each panel is constructed of fully tempered, laminated glass.
- 2. Each panel is secured to the structure with three supports.
- 3. A top rail is not required for these panels.
- 4. Wind pressure previous testing confirms that the panels meet the 180 mph factored wind speed requirement, with a calculated factor-of-safety of 2.24.
- 5. The panels do not require wind debris projectile testing.

Please call or e-mail us to discuss this analysis or any portion of the project to evaluate your panels.

Sincerely, American Engineering Testing, Inc.

Kus & Warta

Chris Hartnett, PE* Principal Engineer *MN, WI Phone: 651-647-2750 chartnett@amengtest.com

Attachment: Testing and Code Evaluation

- 1: North Carolina Figure 1609.1 Ultimate Wind Design Speed.
- 2: ASCE 7-10 Wind & Pressure Calculations.
- 3. Finite Element Modelling.
- 4: Physical Testing

1609.3 Ultimate Design Wind Speed

The ultimate design wind speed, V_{ult} , in mph, for the determination of the wind loads shall be determined by Figures 1609.3(1), 1609.3(2) and 1609.3(3). The ultimate design wind speed, V_{ult} , for use in the design of Risk Category II buildings and structures shall be obtained from Figure 1609.3(1). The ultimate design wind speed, V_{ult} , for use in the design of Risk Category III and IV buildings and structures shall be obtained from Figure 1609.3(2). The ultimate design wind speed, V_{ult} , for use in the design of Risk Category III and IV buildings and structures shall be obtained from Figure 1609.3(2). The ultimate design wind speed, V_{ult} , for use in the design of Risk Category II buildings and structures shall be obtained from Figure 1609.3(2). The ultimate design wind speed, V_{ult} , for use in the design of Risk Category I buildings and structures shall be obtained from Figure 1609.3(3). The ultimate design wind speed, V_{ult} , for the special wind regions indicated near mountainous terrain and near gorges shall be in accordance with local jurisdiction requirements. The ultimate design wind speeds, V_{ult} , determined by the local jurisdiction shall be in accordance with Section 26.5.1 of ASCE 7. The exact location of wind speed lines shall be established by local ordinance using recognized physical landmarks such as major roads, canals, rivers and lake shores wherever possible.

In nonhurricane-prone regions, when the ultimate design wind speed, V_{ult} , is estimated from regional climatic data, the ultimate design wind speed, V_{ult} , shall be determined in accordance with Section 26.5.3 of ASCE 7.

Notes:

1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10 m) above ground for Exposure C category.

- 2. Linear interpolation between contours is permitted.
- 3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
- 4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

 5. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (Annual Exceedance Probability = 0.00143, MRI = 700 Years).

6. Location-specific basic wind speeds shall be permitted to be determined using www.atcouncil.org/windspeed.

FIGURE 1609.3(1)ULTIMATE DESIGN WIND SPEEDS, Vult, FOR RISK CATEGORY II BUILDINGS AND OTHER STRUCTURES

ULTIMATE DESIGN WIND SPEEDS, VULT, FOR RISK CATEGORY III AND IV BUILDINGS AND OTHER STRUCTURES

ULTIMATE DESIGN WIND SPEEDS, V_{ULT} , FOR RISK CATEGORY I BUILDINGS AND OTHER STRUCTURES

1609.3.1 Wind Speed Conversion

11/2/2020

1609.3 Ultimate Design Wind Speed

When required, the ultimate design wind speeds of Figures 1609.3(1), 1609.3(2) and 1609.3(3) shall be converted to nominal design wind speeds, V_{asd} , using Table 1609.3.1 or Equation 16-33.

$$V_{asd} = V_{ult} \sqrt{0.6}$$

where:

(Equation 16-33)

 V_{asd} = Nominal design wind speed applicable to methods specified in Exceptions 4 and 5 of Section 1609.1.1.

 V_{ult} = Ultimate design wind speeds determined from Figures 1609.3(1), 1609.3(2) or 1609.3(3).

TABLE 1609.3.1

WIND SPEED CONVERSIONS^{a, b, c}

V _{ult}	100	110	120	130	140	150	160	170	180	190	200
V _{asd}	78	85	93	101	108	116	124	132	139	147	155

For SI: 1 mile per hour = 0.44 m/s.

a. Linear interpolation is permitted.

b. V_{asd} = nominal design wind speed applicable to methods specified in Exceptions 1 through 5 of Section 1609.1.1.

c. V_{ult} = ultimate design wind speeds determined from Figure 1609.3(1), 1609.3(2) or 1609.3(3).

Attachment 1

Attachment 2: Wind Loading Calculation

IBC Wind Load Calculations

Project: CVG Railings - North Carolina High Wind Region Project #: 05-20608 11/5/2020 Code: North Carolina Building Code Source Document: ASCE 7-10, Chapter 29

Other Structures (Section 6.5.13)

Сое	fficients	
<u>Coefficient</u>	value	source
Risk Category	ii	Table 1.5-1
V (mph):	139	Figures 26.5-1A-C. All of US e
Exposure:	С	para 26.7
direction factor, Kd:	0.85	Table 26.6-1
topography fact , Kzt	1	para 26.8
gust factor, G	0.85	Section 26.9
Larger dimension of sign, M (ft)	5	Table 6-11
Smaller dimension of sign, N (ft)	3	Table 6-11
Net force coefficients, Cf	1.8	Figure 29.4-1 through 29.5-3
Average height above ground, (ft)	100	
velocity pres. Expose coeff, Kz		Table 29.3-1
Building height (ft):		
0-15	0.85	
20	0.9	
25	0.94	
30	0.98	
40	1.04	
50	1.09	
60	1.13	
70	1.17	
80	1.21	
90	1.24	
100	1.26	Kh (K @ mean roof ht
velocity pres. Expose coeff, Kh	1.26	Choose highest value of Kz
Velocity pressure, qz	52.97	qz=.00256 [*] Kz*Kzt*Kd*V^2
Projected area normal to wind, Af (sq ft)	15	=M*N
Total Force on Supports, F (kips)	1.22	F=qz*G*Cf*Af
Equivalent pressure, P (psf)	81.0	P=F/(M*N)

A finite-element-model (FEM) was created to model the Hercules Glass Panel. The model measures $60'' \times 39'' \times 13$ mm (0.51'') thick, and includes 960 elements sized approximately 1.5'' square x 13mm (0.51'') thick. The model is supported at three points, at the panel "spigots. The spigots are approximately 4'' tall x 3'' wide. See Figure 1 below.

Figure 1: Panel Configuration

The highest stresses caused by a lateral wind load are experienced at the elements around the spigots. Figure 2 shows the element numbers of the panel and a close-up of the elements around the spigots. Note that the elements supported directly by the spigots are blanked out because they are supported by the spigots and are not stressed.

<u>Left spigot</u>	Middle spigot	<u>Right spigot</u>
Element 899	919	939
897	917	937
819	839	859
820	840	860
823	842	863
824	844	864
902	922	942
904	924	944

3 4 7 8 11 12 15 16 10 20 22 27 22 23 24<	1	2	5	6	9	10	13	14	17	18	21	22	25	26	29	30	33	34	37	38	41	42	45	46	49	50	53	54	57	58	61	62	65	66	69	70	73	74	77	78
In 12 als 16 is 19 0 a) 14 37 is 10 intrazios/original rint 1111 r121222122121213113141414144144144154152152156156150 13 4 37 39 1 2 2 3 19 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 10 10 10 10 10 10 11 112 1121221212121	3	4	7	8	11	12	15	16	19	20	23	24	27	28	31	32	35	36	39	40	43	44	47	48	51	52	55	56	59	60	63	64	67	68	71	72	75	76	79	30
183 187 189 19 196 19	81	82	85 1	86	89	90	93	94	97	98	101	102	105	106	109	110	113	114	117	118	121	122	125	126	129	130	133	134	137	138	141	142	145	146	149	150	153	154	1571	58
116 116 116 112 1	83	84	87	88	91	92	95	96	99	100	103	104	107	108	111	112	115	116	119	120	123	124	127	128	131	132	135	136	139	140	143	144	147	148	151	152	155	156	1591	60
113816410716077177778717677817918383644871687199199192020200420042020042020042020222224222222	161	162	1651	66	169	170	173	174	177	178	181	182	185	186	189	190	193	194	197	198	201	202	205	206	209	210	213	214	217	218	221	222	225	226	229	230	233	234	2372	38
24 \$4249474485 1252555555555555555555555555555555555	163	164	1671	68	171	172	175	176	179	180	183	184	187	188	191	192	195	196	199	200	203	204	207	208	211	212	215	218	219	220	223	224	227	228	231	232	235	236	2392	40
24244276425125255255255255255255555555555555555	241	242	2452	246	249	250	253	254	251	258	261	262	265	266	289	270	273	274	277	278	281	282	285	286	289	290	293	294	297	298	301	302	305	306	309	310	B13	314	3173	18
32 12 <td< td=""><td>243</td><td>244</td><td>2472</td><td>248</td><td>251</td><td>252</td><td>255</td><td>256</td><td>259</td><td>260</td><td>263</td><td>264</td><td>267</td><td>268</td><td>271</td><td>272</td><td>275</td><td>276</td><td>278</td><td>280</td><td>283</td><td>284</td><td>287</td><td>288</td><td>291</td><td>292</td><td>295</td><td>296</td><td>299</td><td>300</td><td>303</td><td>304</td><td>307</td><td>308</td><td>311</td><td>312</td><td>315</td><td>316</td><td>3193</td><td>20</td></td<>	243	244	2472	248	251	252	255	256	259	260	263	264	267	268	271	272	275	276	278	280	283	284	287	288	291	292	295	296	299	300	303	304	307	308	311	312	315	316	3193	20
32322212521333333333333333344 32333333333333344 323333433344 3233344 323344 33344 33444 34444 3444 3444 <	321	322	325	20	329	330	333	334	33	338	341	342	345	346	349	350	353	354	35/	358	301	362	305	350	369	370	373	3/4	3//	378	381	382	385	380	389	390	393	394	3973	98
00 00	323	324	12/12	128	331	332	335	836	335	040	343	344	34/	348	351	352	470	300	355	300	303	354	307	308	3/1	3/2	375	378	3/9	380	383	384	387	388	391	392	395	396	3994	00
100 1	401	1024	1054	100	409 444	410	413	414	411	410	421	422	820	420	423	430	433	434	43/	430	441	442	445	440	445	450	453	454	45/	458	401	402	405	400	405	470	413	476	470	20
48384447 48384447 48384447 48384447 484847 54383453 5328353 5328353 5328353 5328352 5228526 5228526 5228526 5228526 5228526 5228526 5228526 5228526 5228526 5228526 5228526 5228526 52866 5228526 528666 53866 52866	481	182	854	186	189	490	403	49.4	401	498	501	502	505	506	5/10	510	613	514	517	518	521	522	525	526	520	530	633	634	537	539	541	542	545	546	540	550	653	654	65.7	58
66 66 <td< td=""><td>483</td><td>184</td><td>1874</td><td>188</td><td>191</td><td>492</td><td>495</td><td>496</td><td>490</td><td>500</td><td>503</td><td>504</td><td>507</td><td>508</td><td>511</td><td>512</td><td>515</td><td>516</td><td>519</td><td>520</td><td>523</td><td>524</td><td>527</td><td>528</td><td>531</td><td>632</td><td>535</td><td>536</td><td>539</td><td>540</td><td>543</td><td>544</td><td>547</td><td>548</td><td>551</td><td>550</td><td>655</td><td>556</td><td>559</td><td>60</td></td<>	483	184	1874	188	191	492	495	496	490	500	503	504	507	508	511	512	515	516	519	520	523	524	527	528	531	632	535	536	539	540	543	544	547	548	551	550	655	556	559	60
6659660066366466766867167267667688618388468588861992000300000000000000000000000000000000	561	562	655	66	569	570	673	574	571	578	581	582	585	586	589	590	593	594	597	598	601	602	605	606	609	610	613	614	617	618	621	622	625	626	629	630	633	634	6370	38
64 64 <td< td=""><td>563</td><td>564</td><td>5675</td><td>68</td><td>571</td><td>572</td><td>575</td><td>576</td><td>579</td><td>580</td><td>583</td><td>584</td><td>587</td><td>588</td><td>591</td><td>592</td><td>595</td><td>596</td><td>599</td><td>800</td><td>603</td><td>604</td><td>607</td><td>608</td><td>611</td><td>612</td><td>615</td><td>616</td><td>619</td><td>620</td><td>623</td><td>624</td><td>627</td><td>628</td><td>631</td><td>632</td><td>635</td><td>636</td><td>639</td><td>40</td></td<>	563	564	5675	68	571	572	575	576	579	580	583	584	587	588	591	592	595	596	599	800	603	604	607	608	611	612	615	616	619	620	623	624	627	628	631	632	635	636	639	40
64364464764865165285566659566658666366486756875757576778646384848756895162265767777777777777777777777777777777	641	342	3456	46	549	650	653	654	657	658	661	862	865	666	869	670	873	874	677	878	681	682	685	686	689	690	693	694	697	698	701	702	705	706	709	710	713	714	717	18
72 72 <td< td=""><td>643</td><td>544</td><td>5476</td><td>48</td><td>551</td><td>652</td><td>655</td><td>656</td><td>659</td><td>660</td><td>663</td><td>664</td><td>667</td><td>668</td><td>671</td><td>672</td><td>675</td><td>676</td><td>679</td><td>680</td><td>583</td><td>684</td><td>687</td><td>688</td><td>691</td><td>692</td><td>695</td><td>696</td><td>699</td><td>700</td><td>703</td><td>704</td><td>707</td><td>708</td><td>711</td><td>712</td><td>715</td><td>716</td><td>7197</td><td>20</td></td<>	643	544	5476	48	551	652	655	656	659	660	663	664	667	668	671	672	675	676	679	680	583	684	687	688	691	692	695	696	699	700	703	704	707	708	711	712	715	716	7197	20
723724727728731732735736738740743744747748757527557567567567667876476376476377777777777776776778786783784788778878891929595969900 801802805806809810813814817816821822822822832835835835835835835838448458458538558585858	721	122	257	26	729	730	733	734	731	738	741	742	745	746	749	750	753	754	757	758	761	762	765	766	769	770	773	774	777	778	7B1	782	785	786	789	790	793	794	7977	'98
B0180280680691081381481181181163191208231243278283183383483783484184284484585185385485785486196286766785804877877877878 B0280480780881191218163191208231243278283183283583683984484584847848851853854857854861962867668871672875876878880 B028048078088119121816816319120823124327828318328358368398448458484784885185385485785486686867668871672875876878880 B0280480780881191281581631912082312432782883183283583683684848478488518538548598483934837 9429429429429449499506538549579880 B02804807808811912915916916 92192792833193293593633 94294294294494950653854957988 B02804807808811912915916916 92192792833193293593633 944947948851952955950959900 B06559660066366466766887167267567667968806836846876888916928956956965995000 944947948951952955950959900 B073377387417427457467497507537547567587607637647677687717727777777777787817827857887 B073974074374474774875175275575675976076376476776877177727777777787817827837847877887 B0179188218228258268398099910913914917 92292926926929930833934937 9429459468 B015302827324 3278288318328358368358368368368483768889185285585685985685858548578586685985866859856859856859856959900 B0179374077437447477487517527557567597607637647677687717777777777777777777777777777	723	724	271	28	731	732	735	736	739	740	743	744	747	748	751	752	755	756	759	760	763	764	767	768	771	772	775	776	779	780	783	784	787	788	791	792	795	796	799	100
Botsoukov/sodk 1 sizk 168 r (63 19 12/8) 22 432 / 32 24 32 / 32 /	801	302	3058	106	809	810	813	B14	817	818	821	822	825	826	829	830	833	834	837	838	841	842	845	846	849	850	853	854	857	858	861	862	865	866	869	870	873	874	8778	78
8888286980893990993894397 30220300800910913914917 922292392923933934931 9429494044950953954057958 8888488788889199299589399 204307908911912915916916 92492792831932935936936 9449479489519529559569569569569569569569569569569569569	803	304	3078	808	311	812	815	816	315	320	823	324	327	828	831	832	835	836	839	840	843	844	B47	848	851	852	855	856	855	860	861	864	867	868	871	872	875	876	8798	80
883848878888918929928939 204307908911912915916919 921927928931932932930930 9449479489519529569569569569569569569569569569569569569	881	382	3856	86	389	890	893	894	397	1.00	12	302	905	906	909	910	913	914	917		-	922	925	926	929	930	933	934	937		1	942	945	946	949	950	953	954	9579	58
66596606636646676686716726756766796806836846876886916926956966997007037047077087 147377387417427457467497507537547577587617627657667697707737747777787817827857867 167397407437447477487517527557567597607637647677687717727757767797807837847877887 148178188218228258268298308338348378388418428458468498508538548578588618628658668 1631532082332432782833183283583683534084384847848451852855856855856855860865864867868 16397 302305906909910913914917 922925926929930833934937 9429459468 16392 304307908911912915916915 924927928931932935936935 9449479488	883	384	3878	88	391	892	895	896	399			904	307	908	911	912	915	916	919			924	927	928	931	932	935	936	939		-	944	947	948	951	952	955	956	959	60
34737738741742745746749750753754757758761762765766769770773774777778781782785786 36739740743744747748751752755756759760763764767768771772775776779780783784787788 368739740743744747748751752755756759760763764767768771772775776779780783784787788 14817818821822825826829830833834837838841842845846849850853854857856861862865866 1681532082332432782883183283583683534084384484784851852855856855856855866863864867868 1681532082332432782883183283583683534084384484784851852855856855856855866863864867868 168397 302 302 305906909910913914917 922 322 92592692930833934937 942 304 307 304 304 304 307908911912915916915 924 927928931932935936935 944	566	59	360	16	63	66	40	67	6	88	87	16	72	67	56	76	67	96	80	68	33	384	468	37	68	86	91	69	26	95	69	66	99	70	00	70:	370	04	707	708
067397407437447474748751752755756759760763764767768771772775776779780783784787788 4817818821822825826829830833834837838841842845846849850853854857858861862865868 16815320823324327828831832835836835340843844847848851852855856855360863864867868 14897 902905906909910913914917 922925926929930933934937 9429459463 16899 904907908911912915916915 924927928931932935936935 9449479483	347	37	738	17	41	74	27	45	17	46	74	97	50	75	37	54	75	4	58	76	517	762	70	85	76	67	69	77	07	73	77	47	71	11	8	78	178	32	785	786
4817818821822825826829830833834837838841842845846849850853854857858861862865866 6815320823324327828831832835836835840843848478488518528558568558568558608658648678688 4897 302305906909910913914917 922925926929930833934937 9429459468 16899 304307908911912915916915 924927928931932935936935 9449479488	67.	39	740	17	43	74	47	41	7.	48	75	17	52	75	67	56	75	97	60	76	337	64	17	57	76	87	71	77	\$7	75	77	et/	79	178	30	78	378	84	787	788
16815320823324327828831832835836835340843844847848851852855856855860863864867868 14897 902905906909910913914917 922925926926930833934937 9429459468 16898 904907908911912915916915 924927928931932935936935 9449479488	48	17	310	8	21	82	2	325	8	26	32	98	30	83	38	34	83	7	38	84	41	342	284	45	84	6	49	85	œ	53	85	4	157	85	58	36	180	52	365	866
04897 002905905905910913914917 922925925925930933934937 942945945 16896 904907905911915916916 924927925931932935936936 944947945	68	15	320	18	23	32	4	321	8	28	83	18	32	83	58	36	83	53	40	184	428	344	184	17	84	8	51	85	28	55	85	68	159	36	ich	36	B	54	867	868
16399 304307908911912915916919 924927928931932935936935 944947948	148	97				90	2	905	9	06	90	99	10	91	39	14	91	7				22	292	25	92		29	93	œ	33	93	49	131	1			9.	42	945	946
	68	99		T		90	4	00	9	08	91	19	12	91	59	16	91	S	ł	T	1.1.1	2	19	27	92	89	31	93	29	35	93	69	138		1	10	9.	44	947	948

Figure 2: Element numbering – full panel and close-up of elements surrounding three spigots

Two load cases were run to estimate the stresses surrounding the spigot:

- An 81 psf wind load that is equivalent to a 139 mph unfactored load (180 psf factored load). Figure 3;
- 2. The loading-to-failure test: 820# loaded at 42" above the spigots (see attachment 4 for an explanation of this). Figure 4.

The wind load created a surface tensile stress (σ , pulling the face of the glass apart, which is the failure mechanism for a brittle material) of 15,979 psi. See Figure 3. The test-to-failure created tensile stress of 35,767 psi. This shows the panel has a factor of safety of 2.24 against failure due to Florida's highest winds of 180 mph (factored). See Figure 4.

The FEM model is available for review, upon request.

Attachment 3: Finite Element Modelling

Results for LC 8, 81 psf

Figure 3: Stresses due to 81 psf (180 mph factored winds)

Attachment 3: Finite Element Modelling

Loads: BLC 5, 820#@28" Results for LC 5, 820@28"

Figure 4: Stresses due to failure load (820 psf @ 28")

July 13, 2020

Building Code Requirements

The International Building Code (IBC) and International Residential Code (IRC) are "model codes" created by the International Code Council, intended to be used by states and municipalities as they publish their own building codes. Section 1607.8 of the IBC requires that "handrails and guards shall be designed to resist a linear load of 50 plf." It also requires the system to resist a 200# concentrated load that produces the "maximum load effect" on any element within the system. The 2018 IRC Table R201.5 extends this requirement into residential construction. It is understood within the building design industry that loads applied to the top of the panel create the maximum load effect; structural design assumes this loading condition.

Section 1607.8 of the IBC also refers to IBC section 2407 that adds a requirement for all-glass handrails and guards to "be laminated glass constructed of fully tempered or heat-strengthened glass"; this requirement was added in the 2015 IBC code cycle. Section 2407.1.1 adds the significant requirement: "a design factor of four shall be used for safety". This addition bumps up the linear load to 200 plf and the concentrated load to 800#. Presumably, this is intended to prevent the glass from shattering and injuring people below.

Exterior glass guardrail panels are designed to resist two load types: wind loads, and "live" loads such as a person or object pushing on or striking the panel from the side or from above. Wind loading on a panel can vary greatly based on location, terrain (wooded vs open) and elevation above ground; these are governed by publication ASCE 7 (American Society of Civil Engineers <u>Minimum Design Loads for</u> <u>Buildings and Other Structures</u>). Wind speeds of 115 psf are used to calculate wind pressures against the glass, which generally vary from 17 psf (2nd story in wooded area) to 35 psf (30 stories tall in open terrain). The wind speeds required to match the stresses created by the 800# point load are 192 mph for the 42" tall panel and 215 mph for the 36" tall panel; these are only seen in a Category 5 hurricane or a tornado. Therefore, the 800# horizontal point load is the worst-case scenario for the panels. Note: panel design in "high wind" regions such as the coastal Southeast US are designed to resist flying debris and are subject to different loading requirements. Calculation methods to arrive at these values include computer modeling using finite element analysis; criteria specific to Clear View's panels and support configuration were used.

Hercules Glass Testing

Testing was performed on the Hercules Glass panel by Clear View's glass supplier, to simulate the forces created by 800# horizontal and vertical point loads on the panel (loads are not required to be simultaneous). The vertical load test is straightforward and is shown in photo 1. Note: the intent was to load the panel to failure; however, the testers ran out of sandbags at 2,520 pounds, without failure. Given the difficulty of pushing an 800# load horizontally against the panel, a test rig was set up that supports the panel on its side and places sandbags vertically on the panel. The panel is supported 28" from the top of panel (creating a 28" cantilever), with a heavy counterweight holding down the bottom of the panel mounted in its spigots. Sandbags were placed at the top edge of the panel until failure. See Diagram 1 and photo 2. The panel failed after one minute with 820 pounds loaded on its edge, which is equivalent to 547 pounds for a 42" tall panel. Due to the laminate construction of the panels (similar to a vehicle windshield), the panel broke into small pieces that were retained within the panel, preventing

dangerous flying glass debris. See photo 3. This test shows that the panel meets the intent to create a strong and safe barrier that can withstand reasonable loading (factor of safety of 2.5), and does not explode with dangerous glass shards during excessive loading.

Photo 1: Panel loaded vertically with 2,520 pounds.

Photo 2: Loading of panel with sandbags, simulating horizontal force

Attachment 4: Physical Testing

Diagram 1: Test rig lying on its side, looking from above, showing panel supported at 28" and at bottom of panel

Photo 3: Panel after failure, showing all glass intact within laminate structure.

FLORIDA AND MIAMI DADE COUNTY Noa data

January 28, 2021

Mr. Chris Frederick Product Control Section Department of Regulatory and Economic Resources Miami-Dade County 11805 S. W. 26 Street, Room 208 Miami, Florida, 33175-2474

Re: ClearView Glass Railings – Request for Notice of Acceptance (NOA) for Hercules Glass Panels

Dear Mr. Frederick,

This letter is written to request a Notice of Acceptance (NOA) for our Hercules Glass Panels product. This is a request for a NOA for a new product. Our Hercules Glass Panels are sold as interior and exterior glass railings, to be installed on commercial and residential buildings as guardrails. They meet Florida Building Code requirements for guardrails, including special requirements for all-glass railings. The panels have been tested and evaluated to withstand the 180 mph winds in the high wind coastal area.

Included in this submittal packet:

- 1. Application
- 2. Application review fee
- 3. Indication of labeling to meet Miami-Dade County Labeling Guideline.
- 4. Signed letter by Florida Licensed PE stating that the produce conforms to current FBC.
- 5. Signed letter by same Florida PE that he has no financial interest with the lab that performed the test or the product supplier.
- 6. Packet signed by Florida PE that includes evaluation of FBC requirements, testing data, and structural analysis of testing results.
- 7. Marked-up drawing identifying all components of specimens.

Sincerely,

John Ruprecht

CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

Attachment 4

February 1, 2021

Mr. Chris Frederick Product Control Section Department of Regulatory and Economic Resources Miami-Dade County 11805 Southwest 26th St. Miami, FL 33175

Re: ClearView Glass Railings – Florida Code Review AET Project #: 05-20608

Dear Mr. Frederick,

This letter provides our statement regarding the Hercules Glass Panel, produced by ClearView Glass Railings of Lakeland, Minnesota, conformance to the Florida State Building Code relative to Sections 1607 and 1609 for exterior guardrails and more specifically, all-glass guardrails. Our scope included reviewing physical testing performed by others and performing our own stress calculations using Finite Element Analysis methods. Based on our analysis and to the best of our knowledge, it is our opinion that the Hercules Glass Panels meet the applicable sections of the Florida State Building Code. This letter is accompanied by a packet of information that describes our services with this product.

Contact us for additional information or with questions that you might have.

Sincerely, American Engineering Testing, Inc.

Chris Hartnett, PE* Principal Engineer *MN, WI, AL, MD, MO, NC, ND, OH, PA, TN VA Phone: 651-647-2750 <u>chartnett@amengtest.com</u>

Daniel J. Larson, **PE** Principal Engineer Florida License #70286 Phone: 651-659-1337 <u>dlarson@amengtest.com</u>

CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

Attachment 5

February 1, 2021

Department of Regulatory and Economic Resources – Product Control Section Miami-Dade County Stephen P. Clark Center 111 NW 1st St. Miami, FL 33128

Re: "Hercules" Glass Guardrail Panel Testing – Statement of Non-Financial Interest AET Project #: 05-20608

Dear Product Control Section,

This letter is written to support the application for a Notice of Acceptance (NOA) by Miami-Dade County, for Clear View Glass Railings (CVG) "Hercules" Glass Guardrail Panel. American Engineering Testing (AET) has been engaged by CVG to provide structural testing and engineering consulting services to address International Building Code (IBC) and Florida Building Code (FBC) requirements.

American Consulting Services and all subsidiaries including AET, officers and staff working on this project, have no financial interest in CVG or their products.

Sincerely, American Engineering Testing, Inc.

Chris Hartnett, PE* Principal Engineer *MN, WI, AL, MD, MO, NC, ND, OH, PA, TN VA Phone: 651-647-2750 <u>chartnett@amengtest.com</u>

Daniel J. Larson, **PE** Principal Engineer Florida License #70286 Phone: 651-659-1337 <u>dlarson@amengtest.com</u>

CONSULTANTS

- ENVIRONMENTAL
- GEOTECHNICAL
- MATERIALS
- FORENSICS

St. Paul, MN Duluth, MN Mankato, MN Marshall, MN Rochester, MN Williston, ND Pierre, SD Rapid City, SD Sioux Falls, SD Wausau, WI Sheridan, WY Gillette, WY Casper, WY

Attachment 6

CLEARVIEW GLASS RAILINGS – STRUCTURAL ASSESSMENT FOR MIAMI-DADE COUNTY NOTICE OF ACCEPTANCE (NOA)

AET Project No. 05-20608

STRUCTURAL TESTING, FINITE ELEMENT ANALYSIS AND CODE EVALUATION

JANUARY 28, 2021

PREPARED FOR: MR. JOHN RUPRECHT CLEAR VIEW GLASS RAILINGS 737 QUENTIN AVENUE SOUTH LAKELAND, MN 55043

PREPARED BY: CHRIS HARTNETT, PE DANIEL LARSON, PE

Attachment 6

February 1, 2021

Mr. John Ruprecht Clear View Glass Railings 737 Quentin Avenue South Lakeville, MN 55043

Re: Florida Wind Load Requirements for Wind-Borne Debris Regions, and Considerations for "Hercules" Glass Guardrail Panel AET Project #: 05-20608

Dear Mr. Ruprecht,

This letter reports the findings of our review of the Florida Building Code (FBC) wind requirements for Wind-Borne Regions, as defined by the FBC. We compare these requirements to the published and tested strength of the Hercules Glass Guardrail Panel, model CVGR 1001 FWP, and provide conclusions regarding panel design requirements to meet specific portions of the FBC code.

Panel Construction

The Florida Building Code (FBC) Section 2407 addresses glass used in handrails and guards; it specifies materials, loads, support conditions and wind-borne debris regions. According to the FBC and in compliance with Category II of the Consumer Product Safety Commission (CPSC) and Class A of ANSI Z97.1, glass used in guardrails must be laminated glass constructed of fully tempered or heat strengthened glass and tested for its water penetration resistance, wind loading, impact, durability, thermal properties, and mechanical performance. It is our understanding that the panel is laminated and fully tempered.

Panel Support

FBC Section 2407.1.2 requires that all panels "shall be supported by a minimum of three glass balusters or shall be otherwise supported to remain in place should one baluster panel fail". We interpret this to mean that the panels will require three spigot supports. The Hercules Glass Guardrail Panel is available with three spigots, where required by Florida Building Code.

FBC Section 2407.1.2 also includes an exception that states, "A top rail shall not be required where the glass balusters are laminated glass with two or more glass plies of equal thickness and the same glass type when approved by the building official". We understand the panel meets this exception; therefore, a top rail is not required.

Mr. John Ruprecht – Clear View Glass Railings AET Project No. 05-20608 February 1, 2021 Page 2 of 3

Wind Loading vs. Panel Capacity

The FBC follows the International Building Code (IBC) requirements for wind loads, with ultimate (factored) wind speeds up to 180 mph; Table 1609.3.1 converts this to 139 psf for unfactored loading, which was used in the analysis. See Attachment 1 for nominal ground wind speed reference maps from the Florida Building Code.

The American Society of Civil Engineers (ASCE) Standard 7-10, Chapter 29, provides the analysis method to convert wind speed (in mph) to pressure (psf) against the glass panel. Using Exposure Category C (open terrain) and a height of 100 feet above ground; a 139 mph wind produces a calculated pressure of 81psf. See Attachment 2. The three distinct support points, "spigots", for these panels creates stress concentrations around the supports that are best modeled using a finite element model (FEM). A FEM model was created for this panel using Risa-3D software (version 10.0.1), that modeled a 60" wide x 39" tall x 13mm thick tempered and laminated panel, with a 81psf surface load applied. The model generated a 15,979 psi principal axis stress (σ) in the panel. See Attachment 3.

The glass used in the panels was tested to determine its structural capacity, using a static load applied to a test specimen. The specimen was loaded to failure, and the loading was applied to the FEM to determine the equivalent stresses. The failure stress was 35,767 psi. This modeling shows that the panels have calculated factor-of-safety of 2.24. See Attachment 4.

Impact Resistance

For building envelope glazing in wind-borne debris regions, glass that is part of a building envelope must be tested for impact resistance in accordance with American Society for Testing and Materials (ASTM) E1996. This requirement protects a closed building envelope from being penetrated and prevents high wind pressures from filling the building, potentially blowing out windows and lifting the roof off the building. Because these panels are not part of the building enclosure, damage from windborne debris would not penetrate the enclosure and its structural elements. Therefore, this test is not required for the panels used as a guardrail system.

Summary

In summary, based on our understanding of the FBC requirements, our conclusions are as follows:

- 1. Each panel is constructed of fully tempered, laminated glass.
- 2. Each panel is secured to the structure with three supports.
- 3. A top rail is not required for these panels.
- 4. Wind pressure previous testing confirms that the panels meet the 180 mph factored wind speed requirement, with a calculated factor-of-safety of 2.24.
- 5. The panels do not require wind debris projectile testing.

Mr. John Ruprecht – Clear View Glass Railings AET Project No. 05-20608 February 1, 2021 Page 3 of 3

Please call or e-mail us to discuss this analysis or any portion of the project to evaluate your panels.

Sincerely, American Engineering Testing, Inc.

Chris Hartnett, PE* Principal Engineer *MN, WI, AL, MD, MO, NC, ND, OH, PA, TN VA Phone: 651-647-2750 chartnett@amengtest.com

Daniel J. Larson, PE Principal Engineer Florida License #70286 Phone: 651-659-1337 dlarson@amengtest.com

Attachment 1: Florida Building Code Figure 1609.1 – Ultimate Wind Design Speed. Attachment 2: ASCE 7-10 Wind & Pressure Calculations. Attachment 3. Finite Element Modelling. Attachment 4: Physical Testing

1609.3 Ultimate Design Wind Speed

1609.3 Ultimate Design Wind Speed

The ultimate design wind speed, V_{ult} , in mph, for the determination of the wind loads shall be determined by Figures 1609.3(1), 1609.3(2) and 1609.3(3). The ultimate design wind speed, V_{ult} , for use in the design of Risk Category II buildings and structures shall be obtained from Figure 1609.3(1). The ultimate design wind speed, V_{ult} , for use in the design of Risk Category III and IV buildings and structures shall be obtained from Figure 1609.3(2). The ultimate design wind speed, V_{ult} , for use in the design of Risk Category II and IV buildings and structures shall be obtained from Figure 1609.3(2). The ultimate design wind speed, V_{ult} , for use in the design of Risk Category II and IV buildings and structures shall be obtained from Figure 1609.3(2). The ultimate design wind speed, V_{ult} , for use in the design of Risk Category I buildings and structures shall be obtained from Figure 1609.3(3). The ultimate design wind speed, V_{ult} , for the special wind regions indicated near mountainous terrain and near gorges shall be in accordance with local jurisdiction requirements. The ultimate design wind speeds, V_{ult} , determined by the local jurisdiction shall be in accordance with Section 26.5.1 of ASCE 7. The exact location of wind speed lines shall be established by local ordinance using recognized physical landmarks such as major roads, canals, rivers and lake shores wherever possible.

In nonhurricane-prone regions, when the ultimate design wind speed, V_{ult} , is estimated from regional climatic data, the ultimate design wind speed, V_{ult} , shall be determined in accordance with Section 26.5.3 of ASCE 7.

FIGURE 1609.3(1)

ULTIMATE DESIGN WIND SPEEDS, V_{ULT}, FOR RISK CATEGORY II BUILDINGS AND OTHER STRUCTURES

https://up.codes/viewer_export/juris_key/florida/pub/florida_building_code_2017/ref/1609.3

Attachment 1

FIGURE 1609.3(2)

ULTIMATE DESIGN WIND SPEEDS, VULT, FOR RISK CATEGORY III AND IV BUILDINGS AND OTHER STRUCTURES

FIGURE 1609.3(3)

ULTIMATE DESIGN WIND SPEEDS, V_{ULT}, FOR RISK CATEGORY I BUILDINGS AND OTHER STRUCTURES

1609.3.1 Wind Speed Conversion

https://up.codes/viewer_export/juris_key/florida/pub/florida_building_code_2017/ref/1609.3

11/2/2020

1609.3 Ultimate Design Wind Speed

When required, the ultimate design wind speeds of Figures 1609.3(1), 1609.3(2) and 1609.3(3) shall be converted to nominal design wind speeds, V_{asd} , using Table 1609.3.1 or Equation 16-33.

$$V_{asd} = V_{ult} \sqrt{0.6}$$

where:

(Equation 16-33)

 V_{asd} = Nominal design wind speed applicable to methods specified in Exceptions 4 and 5 of Section 1609.1.1.

 V_{ult} = Ultimate design wind speeds determined from Figures 1609.3(1), 1609.3(2) or 1609.3(3).

TABLE 1609.3.1

WIND SPEED CONVERSIONS^{a, b, c}

V _{ult}	100	110	120	130	140	150	160	170	180	190	200
V _{asd}	78	85	93	101	108	116	124	132	139	147	155

For SI: 1 mile per hour = 0.44 m/s.

a. Linear interpolation is permitted.

b. V_{asd} = nominal design wind speed applicable to methods specified in Exceptions 1 through 5 of Section 1609.1.1.

c. V_{ult} = ultimate design wind speeds determined from Figure 1609.3(1), 1609.3(2) or 1609.3(3).

Attachment 1

https://up.codes/viewer_export/juris_key/florida/pub/florida_building_code_2017/ref/1609.3

Attachment 2

IBC Wind Load Calculations

Project: CVG Railings - Florida High Wind Region Project #: 05-20608 11/5/2020 Code: Florida Building Code Source Document: ASCE 7-10, Chapter 29

Other Structures (Section 6.5.13)

Сое	fficients	
Coefficient	value	source
Risk Category	ii	Table 1.5-1
V (mph):	139	Figures 26.5-1A-C. All of US e
Exposure:	С	para 26.7
direction factor, Kd:	0.85	Table 26.6-1
topography fact , Kzt	1	para 26.8
gust factor, G	0.85	Section 26.9
Larger dimension of sign, M (ft)	5	Table 6-11
Smaller dimension of sign, N (ft)	3	Table 6-11
Net force coefficients, Cf	1.8	Figure 29.4-1 through 29.5-3
Average height above ground, (ft)	100	
velocity pres. Expose coeff, Kz		Table 29.3-1
Building height (ft):		
0-15	0.85	
20	0.9	
25	0.94	
30	0.98	
40	1.04	
50	1.09	
60	1.13	
70	1.17	
80	1.21	
90	1.24	
100	1.26	Kh (K @ mean roof ht
velocity pres. Expose coeff, Kh	1.26	Choose highest value of Kz
Velocity pressure, qz	52.97	qz=.00256 [*] Kz*Kzt*Kd*V^2
Projected area normal to wind, Af (sq ft)	15	=M*N
Total Force on Supports, F (kips)	1.22	F=qz*G*Cf*Af
Equivalent pressure, P (psf)	81.0	P=F/(M*N)

A finite-element-model (FEM) was created to model the Hercules Glass Panel. The model measures $60'' \times 39'' \times 13$ mm (0.51'') thick, and includes 960 elements sized approximately 1.5'' square x 13mm (0.51'') thick. The model is supported at three points, at the panel "spigots. The spigots are approximately 4'' tall x 3'' wide. See Figure 1 below.

Figure 1: Panel Configuration

The highest stresses caused by a lateral wind load are experienced at the elements around the spigots. Figure 2 shows the element numbers of the panel and a close-up of the elements around the spigots. Note that the elements supported directly by the spigots are blanked out because they are supported by the spigots and are not stressed.

<u>Left spigot</u>	Middle spigot	<u>Right spigot</u>
Element 899	919	939
897	917	937
819	839	859
820	840	860
823	842	863
824	844	864
902	922	942
904	924	944

3 4 7 8 11 12 15 16 10 20 22 27 22 23 24<	1	2	5	6	9	10	13	14	17	18	21	22	25	26	29	30	33	34	37	38	41	42	45	46	49	50	53	54	57	58	61	62	65	66	69	70	73	74	77	78
In 12 als 16 is 19 0 a) 14 37 is 10 intrazios/original rint 1111 r121222122121213113141414144144144154152152156156150 13 4 37 39 1 2 2 3 19 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 10 10 10 10 10 10 11 112 1121221212121	3	4	7	8	11	12	15	16	19	20	23	24	27	28	31	32	35	36	39	40	43	44	47	48	51	52	55	56	59	60	63	64	67	68	71	72	75	76	79	30
183 187 189 19 196 19	81	82	85 1	86	89	90	93	94	97	98	101	102	105	106	109	110	113	114	117	118	121	122	125	126	129	130	133	134	137	138	141	142	145	146	149	150	153	154	1571	58
116 116 116 112 1	83	84	87	88	91	92	95	96	99	100	103	104	107	108	111	112	115	116	119	120	123	124	127	128	131	132	135	136	139	140	143	144	147	148	151	152	155	156	1591	60
113816410716077177778717677817918383644871687199199192020200420042020042020042020222224222222	161	162	1651	66	169	170	173	174	177	178	181	182	185	186	189	190	193	194	197	198	201	202	205	206	209	210	213	214	217	218	221	222	225	226	229	230	233	234	2372	38
24 \$4249474485 1252555555555555555555555555555555555	163	164	1671	68	171	172	175	176	179	180	183	184	187	188	191	192	195	196	199	200	203	204	207	208	211	212	215	218	219	220	223	224	227	228	231	232	235	236	2392	40
24244276425125255255255255255255555555555555555	241	242	2452	246	249	250	253	254	251	258	261	262	265	266	289	270	273	274	277	278	281	282	285	286	289	290	293	294	297	298	301	302	305	306	309	310	B13	314	3173	18
32 12 <td< td=""><td>243</td><td>244</td><td>2472</td><td>248</td><td>251</td><td>252</td><td>255</td><td>256</td><td>259</td><td>260</td><td>263</td><td>264</td><td>267</td><td>268</td><td>271</td><td>272</td><td>275</td><td>276</td><td>278</td><td>280</td><td>283</td><td>284</td><td>287</td><td>288</td><td>291</td><td>292</td><td>295</td><td>296</td><td>299</td><td>300</td><td>303</td><td>304</td><td>307</td><td>308</td><td>311</td><td>312</td><td>315</td><td>316</td><td>3193</td><td>20</td></td<>	243	244	2472	248	251	252	255	256	259	260	263	264	267	268	271	272	275	276	278	280	283	284	287	288	291	292	295	296	299	300	303	304	307	308	311	312	315	316	3193	20
32322212521333333333333333344 32333333333333344 323333433344 3233344 323344 33344 33444 34444 3444 3444 <	321	322	325	20	329	330	333	334	33	338	341	342	345	346	349	350	353	354	35/	358	301	362	305	350	369	370	373	3/4	3//	378	381	382	385	380	389	390	393	394	3973	98
00 00	323	324	12/12	128	331	332	335	836	335	040	343	344	34/	348	351	352	470	300	355	300	303	354	307	308	3/1	3/2	375	378	3/9	380	383	384	387	388	391	392	395	396	3994	00
100 1	401	1024	1054	100	409 444	410	413	414	411	410	421	422	820	420	423	430	433	434	43/	430	441	442	445	440	445	450	453	454	45/	458	401	402	405	400	405	470	413	476	470	20
48384447 48384447 48384447 48384447 484847 54383453 5328353 5328353 5328353 5328352 5228526 5228526 5228526 5228526 5228526 5228526 5228526 5228526 5228526 5228526 5228526 5228526 52866 5228526 528666 53866 52866	481	182	854	186	189	490	403	49.4	401	498	501	502	505	506	5/10	510	613	514	517	518	521	522	525	526	520	530	633	634	537	539	541	542	545	546	540	550	653	654	65.7	58
66 66 <td< td=""><td>483</td><td>184</td><td>1874</td><td>188</td><td>191</td><td>492</td><td>495</td><td>496</td><td>490</td><td>500</td><td>503</td><td>504</td><td>507</td><td>508</td><td>511</td><td>512</td><td>515</td><td>516</td><td>519</td><td>520</td><td>523</td><td>524</td><td>527</td><td>528</td><td>531</td><td>632</td><td>535</td><td>536</td><td>539</td><td>540</td><td>543</td><td>544</td><td>547</td><td>548</td><td>551</td><td>550</td><td>655</td><td>556</td><td>559</td><td>60</td></td<>	483	184	1874	188	191	492	495	496	490	500	503	504	507	508	511	512	515	516	519	520	523	524	527	528	531	632	535	536	539	540	543	544	547	548	551	550	655	556	559	60
6659660066366466766867167267667688618388468588861992000300000000000000000000000000000000	561	562	655	66	569	570	673	574	571	578	581	582	585	586	589	590	593	594	597	598	601	602	605	606	609	610	613	614	617	618	621	622	625	626	629	630	633	634	6370	38
64 64 <td< td=""><td>563</td><td>564</td><td>5675</td><td>68</td><td>571</td><td>572</td><td>575</td><td>576</td><td>579</td><td>580</td><td>583</td><td>584</td><td>587</td><td>588</td><td>591</td><td>592</td><td>595</td><td>596</td><td>599</td><td>800</td><td>603</td><td>604</td><td>607</td><td>608</td><td>611</td><td>612</td><td>615</td><td>616</td><td>619</td><td>620</td><td>623</td><td>624</td><td>627</td><td>628</td><td>631</td><td>632</td><td>635</td><td>636</td><td>639</td><td>40</td></td<>	563	564	5675	68	571	572	575	576	579	580	583	584	587	588	591	592	595	596	599	800	603	604	607	608	611	612	615	616	619	620	623	624	627	628	631	632	635	636	639	40
64364464764865165285566659566658666366486756875757576778646384848756895162265767777777777777777777777777777777	641	342	3456	46	549	650	653	654	657	658	661	862	865	666	869	670	873	874	677	878	681	682	685	686	689	690	693	694	697	698	701	702	705	706	709	710	713	714	717	18
72 72 <td< td=""><td>643</td><td>544</td><td>5476</td><td>48</td><td>551</td><td>652</td><td>655</td><td>656</td><td>659</td><td>660</td><td>663</td><td>664</td><td>667</td><td>668</td><td>671</td><td>672</td><td>675</td><td>676</td><td>679</td><td>680</td><td>583</td><td>684</td><td>687</td><td>688</td><td>691</td><td>692</td><td>695</td><td>696</td><td>699</td><td>700</td><td>703</td><td>704</td><td>707</td><td>708</td><td>711</td><td>712</td><td>715</td><td>716</td><td>7197</td><td>20</td></td<>	643	544	5476	48	551	652	655	656	659	660	663	664	667	668	671	672	675	676	679	680	583	684	687	688	691	692	695	696	699	700	703	704	707	708	711	712	715	716	7197	20
723724727728731732735736738740743744747748757527557567567567667876476376476377777777777776776778786783784788778878891929595969900 801802805806809810813814817816821822822822832835835835835835835838448458458538558585858	721	122	257	26	729	730	733	734	731	738	741	742	745	746	749	750	753	754	757	758	761	762	765	766	769	770	773	774	777	778	7B1	782	785	786	789	790	793	794	7977	'98
B0180280680691081381481181181163191208231243278283183383483783484184284484585185385485785486196286766785804877877877878 B0280480780881191218163191208231243278283183283583683984484584847848851853854857854861962867668871672875876878880 B028048078088119121816816319120823124327828318328358368398448458484784885185385485785486686867668871672875876878880 B0280480780881191281581631912082312432782883183283583683684848478488518538548598483934837 9429429429429449499506538549579880 B02804807808811912915916916 92192792833193293593633 94294294294494950653854957988 B02804807808811912915916916 92192792833193293593633 944947948851952955950959900 B06559660066366466766887167267567667968806836846876888916928956956965995000 944947948951952955950959900 B073377387417427457467497507537547567587607637647677687717727777777777787817827857887 B073974074374474774875175275575675976076376476776877177727777777787817827837847877887 B0179188218228258268398099910913914917 92292926926929930833934937 9429459468 B015302827324 3278288318328358368358368368368483768889185285585685985685858548578586685985866859856859856859856959900 B0179374077437447477487517527557567597607637647677687717777777777777777777777777777	723	724	271	28	731	732	735	736	739	740	743	744	747	748	751	752	755	756	759	760	763	764	767	768	771	772	775	776	779	780	783	784	787	788	791	792	795	796	799	100
Botsoukov/sodk 1 sizk 168 r (63 19 12/8) 22 432 / 32 24 32 / 32 /	801	302	3058	106	809	810	813	B14	817	818	821	822	825	826	829	830	833	834	837	838	841	842	845	846	849	850	853	854	857	858	861	862	865	866	869	870	873	874	8778	78
8888286980893990993894397 30220300800910913914917 922292392923933934931 9429494044950953954057958 8888488788889199299589399 204307908911912915916916 92492792831932935936936 9449479489519529559569569569569569569569569569569569569	803	304	3078	808	311	812	815	816	315	320	823	324	327	828	831	832	835	836	839	840	843	844	B47	848	851	852	855	856	855	860	861	864	867	868	871	872	875	876	8798	80
883848878888918929928939 204307908911912915916919 921927928931932932930930 9449479489519529569569569569569569569569569569569569569	881	382	3856	86	389	890	893	894	397	1.00	12	302	905	906	909	910	913	914	917		-	922	925	926	929	930	933	934	937		1	942	945	946	949	950	953	954	9579	58
66596606636646676686716726756766796806836846876886916926956966997007037047077087 147377387417427457467497507537547577587617627657667697707737747777787817827857867 167397407437447477487517527557567597607637647677687717727757767797807837847877887 148178188218228258268298308338348378388418428458468498508538548578588618628658668 1631532082332432782833183283583683534084384847848451852855856855856855860865864867868 16397 302305906909910913914917 922925926929930833934937 9429459468 16392 304307908911912915916915 924927928931932935936935 9449479488	883	384	3878	88	391	892	895	896	399			904	307	908	911	912	915	916	919			924	927	928	931	932	935	936	939		-	944	947	948	951	952	955	956	959	60
34737738741742745746749750753754757758761762765766769770773774777778781782785786 36739740743744747748751752755756759760763764767768771772775776779780783784787788 368739740743744747748751752755756759760763764767768771772775776779780783784787788 14817818821822825826829830833834837838841842845846849850853854857856861862865866 1681532082332432782883183283583683534084384484784851852855856855856855866863864867868 1681532082332432782883183283583683534084384484784851852855856855856855866863864867868 168397 302 302 305906909910913914917 922 322 92592692930833934937 942 304 307 304 304 304 307908911912915916915 924 927928931932935936935 944	566	59	360	16	63	66	40	67	6	88	87	16	72	67	56	76	67	96	80	68	33	384	468	37	68	86	91	69	26	95	69	66	99	70	00	70:	370	04	707	708
067397407437447474748751752755756759760763764767768771772775776779780783784787788 4817818821822825826829830833834837838841842845846849850853854857858861862865868 16815320823324327828831832835836835340843844847848851852855856855360863864867868 14897 902905906909910913914917 922925926929930933934937 9429459463 16899 904907908911912915916915 924927928931932935936935 9449479483	347	37	738	17	41	74	27	45	17	46	74	97	50	75	37	54	75	4	58	76	517	762	70	85	76	67	69	77	07	73	77	47	71	11	8	78	178	32	785	786
4817818821822825826829830833834837838841842845846849850853854857858861862865866 6815320823324327828831832835836835840843848478488518528558568558568558608658648678688 4897 302305906909910913914917 922925926929930833934937 9429459468 16899 304307908911912915916915 924927928931932935936935 9449479488	67.	39	740	17	43	74	47	41	7.	48	75	17	52	75	67	56	75	97	60	76	337	64	17	57	76	87	71	77	\$7	75	77	et/	79	178	30	78	378	84	787	788
16815320823324327828831832835836835340843844847848851852855856855860863864867868 14897 902905906909910913914917 922925926929930833934937 9429459468 16898 904907908911912915916915 924927928931932935936935 9449479488	48	17	310	8	21	82	2	325	8	26	32	98	30	83	38	34	83	7	38	84	41	342	284	45	84	6	49	85	œ	53	85	4	157	85	58	36	180	52	365	866
04897 002905905905910913914917 922925925925930933934937 942945945 16896 904907905911915916916 924927925931932935936936 944947945	68	15	320	18	23	32	4	321	8	28	83	18	32	83	58	36	83	53	40	184	428	344	184	17	84	8	51	85	28	55	85	68	159	36	ich	36	B	54	867	868
16399 304307908911912915916919 924927928931932935936935 944947948	148	97				90	2	905	9	06	90	99	10	91	39	14	91	7				22	292	25	92		29	93	œ	33	93	49	131	1			9.	42	945	946
	68	99		T		90	4	00	9	08	91	19	12	91	59	16	91	S	ł	T	1.1.1	2	19	27	92	89	31	93	29	35	93	69	138		1	10	9.	44	947	948

Figure 2: Element numbering – full panel and close-up of elements surrounding three spigots

Two load cases were run to estimate the stresses surrounding the spigot:

- An 81 psf wind load that is equivalent to a 139 mph unfactored load (180 psf factored load). Figure 3;
- 2. The loading-to-failure test: 820# loaded at 42" above the spigots (see attachment 4 for an explanation of this). Figure 4.

The wind load created a surface tensile stress (σ , pulling the face of the glass apart, which is the failure mechanism for a brittle material) of 15,979 psi. See Figure 3. The test-to-failure created tensile stress of 35,767 psi. This shows the panel has a factor of safety of 2.24 against failure due to Florida's highest winds of 180 mph (factored). See Figure 4.

The FEM model is available for review, upon request.

Attachment 3: Finite Element Modelling

Results for LC 8, 81 psf

Figure 3: Stresses due to 81 psf (180 mph factored winds)

Attachment 3: Finite Element Modelling

Loads: BLC 5, 820#@28" Results for LC 5, 820@28"

Figure 4: Stresses due to failure load (820 psf @ 28")

July 13, 2020

Building Code Requirements

The International Building Code (IBC) and International Residential Code (IRC) are "model codes" created by the International Code Council, intended to be used by states and municipalities as they publish their own building codes. Section 1607.8 of the IBC requires that "handrails and guards shall be designed to resist a linear load of 50 plf." It also requires the system to resist a 200# concentrated load that produces the "maximum load effect" on any element within the system. The 2018 IRC Table R201.5 extends this requirement into residential construction. It is understood within the building design industry that loads applied to the top of the panel create the maximum load effect; structural design assumes this loading condition.

Section 1607.8 of the IBC also refers to IBC section 2407 that adds a requirement for all-glass handrails and guards to "be laminated glass constructed of fully tempered or heat-strengthened glass"; this requirement was added in the 2015 IBC code cycle. Section 2407.1.1 adds the significant requirement: "a design factor of four shall be used for safety". This addition bumps up the linear load to 200 plf and the concentrated load to 800#. Presumably, this is intended to prevent the glass from shattering and injuring people below.

Exterior glass guardrail panels are designed to resist two load types: wind loads, and "live" loads such as a person or object pushing on or striking the panel from the side or from above. Wind loading on a panel can vary greatly based on location, terrain (wooded vs open) and elevation above ground; these are governed by publication ASCE 7 (American Society of Civil Engineers <u>Minimum Design Loads for</u> <u>Buildings and Other Structures</u>). Wind speeds of 115 psf are used to calculate wind pressures against the glass, which generally vary from 17 psf (2nd story in wooded area) to 35 psf (30 stories tall in open terrain). The wind speeds required to match the stresses created by the 800# point load are 192 mph for the 42" tall panel and 215 mph for the 36" tall panel; these are only seen in a Category 5 hurricane or a tornado. Therefore, the 800# horizontal point load is the worst-case scenario for the panels. Note: panel design in "high wind" regions such as the coastal Southeast US are designed to resist flying debris and are subject to different loading requirements. Calculation methods to arrive at these values include computer modeling using finite element analysis; criteria specific to Clear View's panels and support configuration were used.

Hercules Glass Testing

Testing was performed on the Hercules Glass panel by Clear View's glass supplier, to simulate the forces created by 800# horizontal and vertical point loads on the panel (loads are not required to be simultaneous). The vertical load test is straightforward and is shown in photo 1. Note: the intent was to load the panel to failure; however, the testers ran out of sandbags at 2,520 pounds, without failure. Given the difficulty of pushing an 800# load horizontally against the panel, a test rig was set up that supports the panel on its side and places sandbags vertically on the panel. The panel is supported 28" from the top of panel (creating a 28" cantilever), with a heavy counterweight holding down the bottom of the panel mounted in its spigots. Sandbags were placed at the top edge of the panel until failure. See Diagram 1 and photo 2. The panel failed after one minute with 820 pounds loaded on its edge, which is equivalent to 547 pounds for a 42" tall panel. Due to the laminate construction of the panels (similar to a vehicle windshield), the panel broke into small pieces that were retained within the panel, preventing

dangerous flying glass debris. See photo 3. This test shows that the panel meets the intent to create a strong and safe barrier that can withstand reasonable loading (factor of safety of 2.5), and does not explode with dangerous glass shards during excessive loading.

Photo 1: Panel loaded vertically with 2,520 pounds.

Photo 2: Loading of panel with sandbags, simulating horizontal force

Attachment 4: Physical Testing

Diagram 1: Test rig lying on its side, looking from above, showing panel supported at 28" and at bottom of panel

Photo 3: Panel after failure, showing all glass intact within laminate structure.

INSTALLATION WITH THREE SPIGOTS

Wood Deck Installation

The hold down force for each spigot is 2,500 lbs. We suggest using 3/8" diameter x 3.5" A354 structural bolts as they have sufficient capacity to resist this force. Use with flat washer to fasten spigots to wood deck. A354 structural bolts and washer should be cadmium plated or stainless steel so they do not rust.

Lag bolts must be installed into rim joists or lam beam or properly blocked sub structure. If lag bolts are attached to deck planks only failure will occur as a result of improper installation. Improper installation and failure may result in injuries or death. Do it once and do it right!

Helpful Installation Tips

- Apply a bit of talcum powder to the inside of the spigot rubber boot to help the glass slide in the rubber boot, not grab the rubber boot.
- Mark spigot location on glass panels with a crayon or wax marker. This allows for fast and easier installation of panel in proper location.
- Some clients have suggested screwing the rim joist to the joist as the screws will hold the rim joist tight to the joist where as nails may not.

Attachment 7

RA

GLASS RAILINGS

SPIGOT SPECS

CLEARVIEW GLASS RAILINGS • 737 Quentin Avenue South • Lakeland, MN 55043 • ClearViewGlassRailings.com